亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? rbfnetwork.java

?? Weka
?? JAVA
?? 第 1 頁 / 共 2 頁
字號:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    RBFNetwork.java *    Copyright (C) 2004 University of Waikato, Hamilton, New Zealand * */package weka.classifiers.functions;import weka.classifiers.Classifier;import weka.clusterers.MakeDensityBasedClusterer;import weka.clusterers.SimpleKMeans;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.SelectedTag;import weka.core.Utils;import weka.filters.Filter;import weka.filters.unsupervised.attribute.ClusterMembership;import weka.filters.unsupervised.attribute.Standardize;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * Class that implements a normalized Gaussian radial basisbasis function network.<br/> * It uses the k-means clustering algorithm to provide the basis functions and learns either a logistic regression (discrete class problems) or linear regression (numeric class problems) on top of that. Symmetric multivariate Gaussians are fit to the data from each cluster. If the class is nominal it uses the given number of clusters per class.It standardizes all numeric attributes to zero mean and unit variance. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -B &lt;number&gt; *  Set the number of clusters (basis functions) to generate. (default = 2).</pre> *  * <pre> -S &lt;seed&gt; *  Set the random seed to be used by K-means. (default = 1).</pre> *  * <pre> -R &lt;ridge&gt; *  Set the ridge value for the logistic or linear regression.</pre> *  * <pre> -M &lt;number&gt; *  Set the maximum number of iterations for the logistic regression. (default -1, until convergence).</pre> *  * <pre> -W &lt;number&gt; *  Set the minimum standard deviation for the clusters. (default 0.1).</pre> *  <!-- options-end --> * * @author Mark Hall * @author Eibe Frank * @version $Revision: 1.9 $ */public class RBFNetwork extends Classifier implements OptionHandler {  /** for serialization */  static final long serialVersionUID = -3669814959712675720L;    /** The logistic regression for classification problems */  private Logistic m_logistic;  /** The linear regression for numeric problems */  private LinearRegression m_linear;  /** The filter for producing the meta data */  private ClusterMembership m_basisFilter;  /** Filter used for normalizing the data */  private Standardize m_standardize;  /** The number of clusters (basis functions to generate) */  private int m_numClusters = 2;  /** The ridge parameter for the logistic regression. */  protected double m_ridge = 1e-8;  /** The maximum number of iterations for logistic regression. */  private int m_maxIts = -1;  /** The seed to pass on to K-means */  private int m_clusteringSeed = 1;  /** The minimum standard deviation */  private double m_minStdDev = 0.1;  /** a ZeroR model in case no model can be built from the data */  private Classifier m_ZeroR;      /**   * Returns a string describing this classifier   * @return a description of the classifier suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Class that implements a normalized Gaussian radial basis"       + "basis function network.\n"      + "It uses the k-means clustering algorithm to provide the basis "      + "functions and learns either a logistic regression (discrete "      + "class problems) or linear regression (numeric class problems) "      + "on top of that. Symmetric multivariate Gaussians are fit to "      + "the data from each cluster. If the class is "      + "nominal it uses the given number of clusters per class."      + "It standardizes all numeric "      + "attributes to zero mean and unit variance." ;  }  /**   * Returns default capabilities of the classifier, i.e.,  and "or" of   * Logistic and LinearRegression.   *   * @return      the capabilities of this classifier   * @see         Logistic   * @see         LinearRegression   */  public Capabilities getCapabilities() {    Capabilities result = new Logistic().getCapabilities();    result.or(new LinearRegression().getCapabilities());    Capabilities classes = result.getClassCapabilities();    result.and(new SimpleKMeans().getCapabilities());    result.or(classes);    return result;  }  /**   * Builds the classifier   *   * @param instances the training data   * @throws Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances instances) throws Exception {    // can classifier handle the data?    getCapabilities().testWithFail(instances);    // remove instances with missing class    instances = new Instances(instances);    instances.deleteWithMissingClass();        // only class? -> build ZeroR model    if (instances.numAttributes() == 1) {      System.err.println(	  "Cannot build model (only class attribute present in data!), "	  + "using ZeroR model instead!");      m_ZeroR = new weka.classifiers.rules.ZeroR();      m_ZeroR.buildClassifier(instances);      return;    }    else {      m_ZeroR = null;    }        m_standardize = new Standardize();    m_standardize.setInputFormat(instances);    instances = Filter.useFilter(instances, m_standardize);    SimpleKMeans sk = new SimpleKMeans();    sk.setNumClusters(m_numClusters);    sk.setSeed(m_clusteringSeed);    MakeDensityBasedClusterer dc = new MakeDensityBasedClusterer();    dc.setClusterer(sk);    dc.setMinStdDev(m_minStdDev);    m_basisFilter = new ClusterMembership();    m_basisFilter.setDensityBasedClusterer(dc);    m_basisFilter.setInputFormat(instances);    Instances transformed = Filter.useFilter(instances, m_basisFilter);    if (instances.classAttribute().isNominal()) {      m_linear = null;      m_logistic = new Logistic();      m_logistic.setRidge(m_ridge);      m_logistic.setMaxIts(m_maxIts);      m_logistic.buildClassifier(transformed);    } else {      m_logistic = null;      m_linear = new LinearRegression();      m_linear.setAttributeSelectionMethod(new SelectedTag(LinearRegression.SELECTION_NONE,							   LinearRegression.TAGS_SELECTION));      m_linear.setRidge(m_ridge);      m_linear.buildClassifier(transformed);    }  }  /**   * Computes the distribution for a given instance   *   * @param instance the instance for which distribution is computed   * @return the distribution   * @throws Exception if the distribution can't be computed successfully   */  public double [] distributionForInstance(Instance instance)     throws Exception {    // default model?    if (m_ZeroR != null) {      return m_ZeroR.distributionForInstance(instance);    }        m_standardize.input(instance);    m_basisFilter.input(m_standardize.output());    Instance transformed = m_basisFilter.output();        return ((instance.classAttribute().isNominal()	     ? m_logistic.distributionForInstance(transformed)	     : m_linear.distributionForInstance(transformed)));  }    /**   * Returns a description of this classifier as a String   *   * @return a description of this classifier   */  public String toString() {    // only ZeroR model?    if (m_ZeroR != null) {      StringBuffer buf = new StringBuffer();      buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n");      buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n");      buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n");      buf.append(m_ZeroR.toString());      return buf.toString();    }        if (m_basisFilter == null) {      return "No classifier built yet!";    }    StringBuffer sb = new StringBuffer();    sb.append("Radial basis function network\n");    sb.append((m_linear == null) 	      ? "(Logistic regression "	      : "(Linear regression ");    sb.append("applied to K-means clusters as basis functions):\n\n");    sb.append((m_linear == null)	      ? m_logistic.toString()	      : m_linear.toString());    return sb.toString();  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品成人一区二区艾草| 亚洲免费大片在线观看| 制服丝袜av成人在线看| 欧美日韩视频不卡| 欧美午夜不卡视频| 欧美区一区二区三区| 欧美日韩成人高清| 欧美一区二区三区免费| 日韩午夜在线观看视频| 欧美videossexotv100| 精品国产乱码久久久久久蜜臀| 日韩欧美成人午夜| 久久看人人爽人人| 中文字幕欧美区| 亚洲麻豆国产自偷在线| 亚洲一区二区三区爽爽爽爽爽| 亚洲午夜免费视频| 久久精品国产久精国产| 国产在线精品国自产拍免费| 国产高清亚洲一区| 99久久精品情趣| 欧美性生活影院| 日韩欧美中文字幕一区| 久久亚洲影视婷婷| 中文字幕一区视频| 午夜精品久久久久久久| 麻豆精品国产91久久久久久| 久久99国产精品免费网站| 国产福利精品一区二区| 色琪琪一区二区三区亚洲区| 91精品麻豆日日躁夜夜躁| 精品国产乱码久久久久久牛牛| 中文字幕精品在线不卡| 亚洲精选一二三| 日本特黄久久久高潮| 国产在线精品一区二区三区不卡| 成人av手机在线观看| 欧洲精品视频在线观看| 日韩一卡二卡三卡| 国产精品久久久久久亚洲伦| 夜色激情一区二区| 精品影视av免费| 97久久超碰国产精品| 制服丝袜成人动漫| 中文字幕在线观看不卡视频| 日韩黄色免费网站| 成人一区二区三区在线观看| 欧美三级韩国三级日本一级| 欧美精品一区二区蜜臀亚洲| 亚洲男人的天堂一区二区| 美日韩一区二区三区| 99国产精品一区| 日韩欧美色综合| 亚洲欧美视频在线观看视频| 久久疯狂做爰流白浆xx| 色噜噜狠狠成人中文综合| 欧美sm美女调教| 亚洲黄色尤物视频| 国产一区二区免费看| 欧美视频在线一区| 亚洲欧洲一区二区三区| 久久精品噜噜噜成人av农村| 91麻豆免费在线观看| 久久一区二区视频| 日本vs亚洲vs韩国一区三区二区 | 国产亚洲女人久久久久毛片| 一区二区理论电影在线观看| 国产成人丝袜美腿| 日韩欧美国产1| 舔着乳尖日韩一区| 91视视频在线观看入口直接观看www | 99久久久无码国产精品| 久久一日本道色综合| 亚洲成人激情综合网| www.亚洲色图.com| 久久亚洲综合色一区二区三区| 午夜激情久久久| 99久久777色| 久久精品在线免费观看| 美腿丝袜亚洲综合| 7777精品伊人久久久大香线蕉的| 综合久久给合久久狠狠狠97色| 琪琪久久久久日韩精品| 在线亚洲高清视频| 中文字幕一区免费在线观看 | 欧美日韩免费电影| 国产精品国产三级国产aⅴ入口| 国产在线播放一区二区三区| 日韩一区二区麻豆国产| 午夜久久电影网| 欧美图片一区二区三区| 亚洲欧美国产三级| 91在线视频18| 亚洲视频一区在线| av亚洲精华国产精华精| 国产精品乱子久久久久| 国产福利一区二区三区在线视频| 精品国产免费人成电影在线观看四季| 日日骚欧美日韩| 欧美日韩精品一区二区三区蜜桃 | 99久久精品国产麻豆演员表| 久久久高清一区二区三区| 国产综合久久久久影院| 欧美成人精品高清在线播放| 免费看欧美美女黄的网站| 91精品在线一区二区| 日韩在线观看一区二区| 7799精品视频| 久久超碰97人人做人人爱| 精品国产乱码久久久久久老虎| 激情综合色播激情啊| 国产日韩欧美一区二区三区综合| 国产高清精品网站| 欧美韩国日本综合| 99久久99久久免费精品蜜臀| 日韩一区在线看| 在线欧美日韩国产| 亚洲一线二线三线视频| 欧美精品vⅰdeose4hd| 日本欧美大码aⅴ在线播放| 日韩一区二区在线观看| 国产一本一道久久香蕉| 国产女主播视频一区二区| 99综合影院在线| 亚洲在线免费播放| 日韩三级.com| 国产精品一级片| 亚洲视频图片小说| 欧美人妖巨大在线| 国产呦萝稀缺另类资源| 国产精品国产精品国产专区不片| 色嗨嗨av一区二区三区| 五月天国产精品| 国产三区在线成人av| 色爱区综合激月婷婷| 美国精品在线观看| 国产欧美一区二区三区网站 | 欧美激情在线观看视频免费| 91亚洲精华国产精华精华液| 亚洲va国产va欧美va观看| 欧美v亚洲v综合ⅴ国产v| 99久久婷婷国产综合精品电影| 亚洲成人综合视频| 久久综合精品国产一区二区三区 | 久久久亚洲高清| 91免费视频网址| 免费久久99精品国产| 国产精品久久看| 6080亚洲精品一区二区| 成人午夜免费电影| 亚洲成人7777| 国产蜜臀97一区二区三区| 欧美蜜桃一区二区三区| 高清国产一区二区| 香蕉久久夜色精品国产使用方法 | 91精品久久久久久久91蜜桃| 成人激情黄色小说| 日本aⅴ精品一区二区三区 | av一区二区三区黑人| 丝袜美腿一区二区三区| 中日韩av电影| 日韩精品自拍偷拍| 色拍拍在线精品视频8848| 国产精一区二区三区| 午夜欧美一区二区三区在线播放| 久久免费视频一区| 67194成人在线观看| 色婷婷综合激情| 国产裸体歌舞团一区二区| 亚洲v中文字幕| 亚洲欧洲国产专区| 久久久99免费| 日韩一区二区精品| 欧美性感一区二区三区| www.亚洲激情.com| 国产一区二区免费在线| 免费在线观看精品| 亚洲福利视频三区| 亚洲精品中文在线| 国产精品网站在线观看| 精品入口麻豆88视频| 欧美丰满少妇xxxbbb| 欧洲日韩一区二区三区| 91在线看国产| 成人免费视频app| 国产福利精品导航| 韩国v欧美v日本v亚洲v| 美女精品自拍一二三四| 天天操天天综合网| 亚洲一二三四在线观看| 亚洲精品你懂的| 亚洲男人的天堂在线aⅴ视频| 国产精品久久久久婷婷| 国产日韩欧美高清在线| 精品精品欲导航| 精品国产污网站| 欧美成人午夜电影| 欧美成人高清电影在线| 欧美一级一区二区| 日韩亚洲欧美在线观看|