亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? j48.java

?? Weka
?? JAVA
?? 第 1 頁 / 共 2 頁
字號:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    J48.java *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand * */package weka.classifiers.trees;import weka.classifiers.Classifier;import weka.classifiers.Sourcable;import weka.classifiers.trees.j48.BinC45ModelSelection;import weka.classifiers.trees.j48.C45ModelSelection;import weka.classifiers.trees.j48.C45PruneableClassifierTree;import weka.classifiers.trees.j48.ClassifierTree;import weka.classifiers.trees.j48.ModelSelection;import weka.classifiers.trees.j48.PruneableClassifierTree;import weka.core.AdditionalMeasureProducer;import weka.core.Capabilities;import weka.core.Drawable;import weka.core.Instance;import weka.core.Instances;import weka.core.Matchable;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Summarizable;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * Class for generating a pruned or unpruned C4.5 decision tree. For more information, see<br/> * <br/> * Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;book{Quinlan1993, *    address = {San Mateo, CA}, *    author = {Ross Quinlan}, *    publisher = {Morgan Kaufmann Publishers}, *    title = {C4.5: Programs for Machine Learning}, *    year = {1993} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -U *  Use unpruned tree.</pre> *  * <pre> -C &lt;pruning confidence&gt; *  Set confidence threshold for pruning. *  (default 0.25)</pre> *  * <pre> -M &lt;minimum number of instances&gt; *  Set minimum number of instances per leaf. *  (default 2)</pre> *  * <pre> -R *  Use reduced error pruning.</pre> *  * <pre> -N &lt;number of folds&gt; *  Set number of folds for reduced error *  pruning. One fold is used as pruning set. *  (default 3)</pre> *  * <pre> -B *  Use binary splits only.</pre> *  * <pre> -S *  Don't perform subtree raising.</pre> *  * <pre> -L *  Do not clean up after the tree has been built.</pre> *  * <pre> -A *  Laplace smoothing for predicted probabilities.</pre> *  * <pre> -Q &lt;seed&gt; *  Seed for random data shuffling (default 1).</pre> *  <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.8 $ */public class J48   extends Classifier   implements OptionHandler, Drawable, Matchable, Sourcable,              WeightedInstancesHandler, Summarizable, AdditionalMeasureProducer,              TechnicalInformationHandler {  /** for serialization */  static final long serialVersionUID = -217733168393644444L;  /** The decision tree */  private ClassifierTree m_root;    /** Unpruned tree? */  private boolean m_unpruned = false;  /** Confidence level */  private float m_CF = 0.25f;  /** Minimum number of instances */  private int m_minNumObj = 2;  /** Determines whether probabilities are smoothed using      Laplace correction when predictions are generated */  private boolean m_useLaplace = false;  /** Use reduced error pruning? */  private boolean m_reducedErrorPruning = false;  /** Number of folds for reduced error pruning. */  private int m_numFolds = 3;  /** Binary splits on nominal attributes? */  private boolean m_binarySplits = false;  /** Subtree raising to be performed? */  private boolean m_subtreeRaising = true;  /** Cleanup after the tree has been built. */  private boolean m_noCleanup = false;  /** Random number seed for reduced-error pruning. */  private int m_Seed = 1;  /**   * Returns a string describing classifier   * @return a description suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return  "Class for generating a pruned or unpruned C4.5 decision tree. For more "      + "information, see\n\n"      + getTechnicalInformation().toString();  }  /**   * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,   * e.g., paper reference or book this class is based on.   *    * @return the technical information about this class   */  public TechnicalInformation getTechnicalInformation() {    TechnicalInformation 	result;        result = new TechnicalInformation(Type.BOOK);    result.setValue(Field.AUTHOR, "Ross Quinlan");    result.setValue(Field.YEAR, "1993");    result.setValue(Field.TITLE, "C4.5: Programs for Machine Learning");    result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers");    result.setValue(Field.ADDRESS, "San Mateo, CA");        return result;  }  /**   * Returns default capabilities of the classifier.   *   * @return      the capabilities of this classifier   */  public Capabilities getCapabilities() {    Capabilities      result;        try {      if (!m_reducedErrorPruning)        result = new C45PruneableClassifierTree(null, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup).getCapabilities();      else        result = new PruneableClassifierTree(null, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed).getCapabilities();    }    catch (Exception e) {      result = new Capabilities(this);    }        result.setOwner(this);        return result;  }    /**   * Generates the classifier.   *   * @param instances the data to train the classifier with   * @throws Exception if classifier can't be built successfully   */  public void buildClassifier(Instances instances)        throws Exception {    ModelSelection modSelection;	     if (m_binarySplits)      modSelection = new BinC45ModelSelection(m_minNumObj, instances);    else      modSelection = new C45ModelSelection(m_minNumObj, instances);    if (!m_reducedErrorPruning)      m_root = new C45PruneableClassifierTree(modSelection, !m_unpruned, m_CF,					    m_subtreeRaising, !m_noCleanup);    else      m_root = new PruneableClassifierTree(modSelection, !m_unpruned, m_numFolds,					   !m_noCleanup, m_Seed);    m_root.buildClassifier(instances);    if (m_binarySplits) {      ((BinC45ModelSelection)modSelection).cleanup();    } else {      ((C45ModelSelection)modSelection).cleanup();    }  }  /**   * Classifies an instance.   *   * @param instance the instance to classify   * @return the classification for the instance   * @throws Exception if instance can't be classified successfully   */  public double classifyInstance(Instance instance) throws Exception {    return m_root.classifyInstance(instance);  }  /**    * Returns class probabilities for an instance.   *   * @param instance the instance to calculate the class probabilities for   * @return the class probabilities   * @throws Exception if distribution can't be computed successfully   */  public final double [] distributionForInstance(Instance instance)        throws Exception {    return m_root.distributionForInstance(instance, m_useLaplace);  }  /**   *  Returns the type of graph this classifier   *  represents.   *  @return Drawable.TREE   */     public int graphType() {      return Drawable.TREE;  }  /**   * Returns graph describing the tree.   *   * @return the graph describing the tree   * @throws Exception if graph can't be computed   */  public String graph() throws Exception {    return m_root.graph();  }  /**   * Returns tree in prefix order.   *   * @return the tree in prefix order   * @throws Exception if something goes wrong   */  public String prefix() throws Exception {        return m_root.prefix();  }  /**   * Returns tree as an if-then statement.   *   * @param className the name of the Java class    * @return the tree as a Java if-then type statement   * @throws Exception if something goes wrong   */  public String toSource(String className) throws Exception {    StringBuffer [] source = m_root.toSource(className);    return     "class " + className + " {\n\n"    +"  public static double classify(Object[] i)\n"    +"    throws Exception {\n\n"    +"    double p = Double.NaN;\n"    + source[0]  // Assignment code    +"    return p;\n"    +"  }\n"    + source[1]  // Support code    +"}\n";  }  /**   * Returns an enumeration describing the available options.   *   * Valid options are: <p>   *   * -U <br>   * Use unpruned tree.<p>   *   * -C confidence <br>   * Set confidence threshold for pruning. (Default: 0.25) <p>   *   * -M number <br>   * Set minimum number of instances per leaf. (Default: 2) <p>   *   * -R <br>   * Use reduced error pruning. No subtree raising is performed. <p>   *   * -N number <br>   * Set number of folds for reduced error pruning. One fold is   * used as the pruning set. (Default: 3) <p>   *   * -B <br>   * Use binary splits for nominal attributes. <p>   *   * -S <br>   * Don't perform subtree raising. <p>   *   * -L <br>   * Do not clean up after the tree has been built.   *   * -A <br>   * If set, Laplace smoothing is used for predicted probabilites. <p>   *   * -Q <br>   * The seed for reduced-error pruning. <p>   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(9);    newVector.	addElement(new Option("\tUse unpruned tree.",			      "U", 0, "-U"));    newVector.	addElement(new Option("\tSet confidence threshold for pruning.\n" +			      "\t(default 0.25)",			      "C", 1, "-C <pruning confidence>"));    newVector.	addElement(new Option("\tSet minimum number of instances per leaf.\n" +			      "\t(default 2)",			      "M", 1, "-M <minimum number of instances>"));    newVector.	addElement(new Option("\tUse reduced error pruning.",			      "R", 0, "-R"));    newVector.	addElement(new Option("\tSet number of folds for reduced error\n" +			      "\tpruning. One fold is used as pruning set.\n" +			      "\t(default 3)",			      "N", 1, "-N <number of folds>"));    newVector.	addElement(new Option("\tUse binary splits only.",			      "B", 0, "-B"));    newVector.        addElement(new Option("\tDon't perform subtree raising.",			      "S", 0, "-S"));    newVector.        addElement(new Option("\tDo not clean up after the tree has been built.",			      "L", 0, "-L"));   newVector.        addElement(new Option("\tLaplace smoothing for predicted probabilities.",			      "A", 0, "-A"));    newVector.      addElement(new Option("\tSeed for random data shuffling (default 1).",			    "Q", 1, "-Q <seed>"));    return newVector.elements();  }  /**   * Parses a given list of options.   *    <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -U   *  Use unpruned tree.</pre>   *    * <pre> -C &lt;pruning confidence&gt;   *  Set confidence threshold for pruning.   *  (default 0.25)</pre>   *    * <pre> -M &lt;minimum number of instances&gt;   *  Set minimum number of instances per leaf.   *  (default 2)</pre>   *    * <pre> -R   *  Use reduced error pruning.</pre>   *    * <pre> -N &lt;number of folds&gt;   *  Set number of folds for reduced error   *  pruning. One fold is used as pruning set.   *  (default 3)</pre>   *    * <pre> -B   *  Use binary splits only.</pre>   *    * <pre> -S   *  Don't perform subtree raising.</pre>   *    * <pre> -L   *  Do not clean up after the tree has been built.</pre>   *    * <pre> -A   *  Laplace smoothing for predicted probabilities.</pre>   *    * <pre> -Q &lt;seed&gt;   *  Seed for random data shuffling (default 1).</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        // Other options    String minNumString = Utils.getOption('M', options);    if (minNumString.length() != 0) {      m_minNumObj = Integer.parseInt(minNumString);    } else {      m_minNumObj = 2;    }    m_binarySplits = Utils.getFlag('B', options);    m_useLaplace = Utils.getFlag('A', options);    // Pruning options    m_unpruned = Utils.getFlag('U', options);    m_subtreeRaising = !Utils.getFlag('S', options);    m_noCleanup = Utils.getFlag('L', options);    if ((m_unpruned) && (!m_subtreeRaising)) {      throw new Exception("Subtree raising doesn't need to be unset for unpruned tree!");    }    m_reducedErrorPruning = Utils.getFlag('R', options);    if ((m_unpruned) && (m_reducedErrorPruning)) {      throw new Exception("Unpruned tree and reduced error pruning can't be selected " +			  "simultaneously!");    }    String confidenceString = Utils.getOption('C', options);

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品噜噜噜噜久久久久久久久试看| 亚洲麻豆国产自偷在线| 亚洲精品欧美专区| 久久99精品国产91久久来源| 色综合色狠狠综合色| 精品成人一区二区| 日韩电影在线观看一区| 99久久精品99国产精品| 国产日韩欧美高清在线| 蜜桃av一区二区在线观看| 亚洲成人高清在线| 国v精品久久久网| 日韩精品一区二区三区四区视频| 一级女性全黄久久生活片免费| 岛国av在线一区| 国产精品羞羞答答xxdd| 91精品国产高清一区二区三区 | 亚洲婷婷在线视频| 国产69精品久久久久毛片| 精品久久人人做人人爰| 日韩**一区毛片| 视频在线在亚洲| 欧美系列亚洲系列| 亚洲另类中文字| 91色婷婷久久久久合中文| 欧美高清在线视频| 福利一区二区在线观看| 久久女同精品一区二区| 久久成人18免费观看| 欧美成人aa大片| 久久精品久久精品| 久久人人爽爽爽人久久久| 黄页网站大全一区二区| 成人免费黄色大片| 亚洲欧洲综合另类| 一本色道久久综合亚洲精品按摩| 亚洲欧洲日本在线| 色视频成人在线观看免| 亚洲成av人影院| 欧美日韩国产高清一区| 日本不卡一区二区三区| 日韩精品一区二区在线| 国产激情一区二区三区四区 | 国产99精品视频| 久久精品欧美日韩精品| 成人18视频在线播放| 亚洲乱码国产乱码精品精可以看| 日本丰满少妇一区二区三区| 亚洲一区二区三区中文字幕在线| 欧美综合一区二区三区| 日韩电影一区二区三区| 国产亚洲精品久| 色综合色狠狠综合色| 天天av天天翘天天综合网| 日韩美女一区二区三区| 国产精品系列在线观看| 亚洲免费观看在线视频| 欧美一区二区三区视频免费| 国产一区二区调教| 国产精品传媒入口麻豆| 欧美日韩黄视频| 国产一区二区三区四| 国产精品久久久久一区二区三区共| 色婷婷国产精品| 国产资源在线一区| 亚洲乱码国产乱码精品精可以看| 日韩一区二区三区视频在线| www.色精品| 日本成人在线网站| 自拍偷拍欧美精品| 欧美xxxx老人做受| 欧美写真视频网站| 成人涩涩免费视频| 五月开心婷婷久久| 中文字幕乱码亚洲精品一区| 正在播放亚洲一区| 99免费精品在线观看| 麻豆成人免费电影| 91精品黄色片免费大全| thepron国产精品| 蜜臀99久久精品久久久久久软件| 亚洲欧洲在线观看av| 精品av久久707| 久久精工是国产品牌吗| 亚洲精品一二三区| 国产日产亚洲精品系列| 欧美一级高清片| 欧美探花视频资源| 99在线精品观看| 国内精品伊人久久久久av影院| 伊人性伊人情综合网| 日本一区二区三区国色天香| 777久久久精品| 在线免费亚洲电影| 99视频有精品| 国产不卡高清在线观看视频| 精品制服美女久久| 视频一区在线播放| 一区二区不卡在线播放| 亚洲欧美国产高清| 日韩一区中文字幕| 国产精品久久午夜| 久久久久久99久久久精品网站| 欧美一区二区三区四区在线观看| 91久久奴性调教| 94-欧美-setu| 99视频有精品| 99精品欧美一区二区三区小说| 国产精品自产自拍| 国产精品99久久久久| 国产一区二区日韩精品| 国产精品综合一区二区| 国产一区在线视频| 国产一区啦啦啦在线观看| 国产综合久久久久久久久久久久| 精品在线一区二区| 国产麻豆精品theporn| 国产伦精品一区二区三区在线观看| 久久超碰97中文字幕| 国产一二三精品| 高清在线成人网| 一本大道av一区二区在线播放| 色嗨嗨av一区二区三区| 欧美日韩欧美一区二区| 欧美日韩精品一区二区三区蜜桃 | 久久久久久亚洲综合影院红桃| 欧美zozo另类异族| 日本一区二区综合亚洲| 亚洲男人的天堂网| 婷婷一区二区三区| 久草在线在线精品观看| 国产精品中文有码| av资源站一区| 欧美精品 日韩| 欧美成人综合网站| 国产精品激情偷乱一区二区∴| 亚洲欧美经典视频| 日韩和欧美一区二区三区| 国内精品久久久久影院薰衣草| 粉嫩13p一区二区三区| 91成人看片片| 精品国产一区二区三区久久久蜜月 | 亚洲一区二区欧美日韩| 舔着乳尖日韩一区| 国产一区二区伦理片| 91啪九色porn原创视频在线观看| 色噜噜狠狠成人网p站| 精品久久国产97色综合| 最新不卡av在线| 青娱乐精品在线视频| 不卡免费追剧大全电视剧网站| 欧美手机在线视频| 欧美激情一区二区三区蜜桃视频| 亚洲国产乱码最新视频| 国产自产高清不卡| 欧美日韩一区二区三区不卡| 欧美激情一区二区三区蜜桃视频 | 国产精品激情偷乱一区二区∴| 亚洲专区一二三| 国产大陆亚洲精品国产| 欧美日韩大陆一区二区| 国产精品美女久久久久高潮| 午夜精品久久久久久久| 国产精品888| 日韩一区二区在线播放| 亚洲精品日日夜夜| 岛国av在线一区| 日韩欧美久久久| 亚洲一区二区三区四区不卡| 成人午夜碰碰视频| 精品国产一区二区三区av性色 | 亚洲欧美视频一区| 国产最新精品精品你懂的| 欧美三日本三级三级在线播放| 国产婷婷色一区二区三区四区| 亚洲国产精品麻豆| 99麻豆久久久国产精品免费优播| 久久综合九色综合久久久精品综合| 日韩一区二区三区av| 亚洲综合视频网| 成人h动漫精品一区二区| xf在线a精品一区二区视频网站| 亚洲成a人片综合在线| 91久久线看在观草草青青| 亚洲欧洲精品一区二区三区| 久久久久国产精品厨房| 国内精品视频666| 精品国产免费人成电影在线观看四季 | 欧美日韩高清一区| 亚洲另类春色国产| 91在线看国产| 亚洲欧洲日韩一区二区三区| 成人伦理片在线| 欧美激情一区二区三区不卡| 国产成人欧美日韩在线电影| 欧美tickling网站挠脚心| 国产一区二区在线观看免费| 久久久久久亚洲综合影院红桃 | 麻豆精品在线观看| 日韩一区二区麻豆国产|