?? volume.c
字號:
ASSERT(pstm->s_blkDir != INVALID_BLOCK);
if (FindBuffer(pvol, pstm->s_blkDir, NULL, FALSE, &pbuf) == ERROR_SUCCESS) {
PDIRENTRY pde;
pde = (PDIRENTRY)(pbuf->b_pdata + pstm->s_offDir);
// Check the 8.3 name first...
if (memcmp(pde->de_name, pstm->s_achOEM, sizeof(pde->de_name)) == 0) {
DWORD clusEntry = GETDIRENTRYCLUSTER(pstm->s_pvol, pde);
if (clusEntry == NO_CLUSTER)
clusEntry = UNKNOWN_CLUSTER;
if ((pstm->s_flags & STF_DIRTY) ||
pde->de_attr == pstm->s_attr &&
pde->de_size == pstm->s_size && clusEntry == pstm->s_clusFirst)
{
pstm->s_flags &= ~STF_UNMOUNTED;
}
}
UnholdBuffer(pbuf);
}
}
// If the stream is now (re)mounted, make sure all its handles are (re)mounted also.
if (!(pstm->s_flags & STF_UNMOUNTED)) {
PFHANDLE pfh, pfhEnd;
pfh = pstm->s_dlOpenHandles.pfhNext;
pfhEnd = (PFHANDLE)&pstm->s_dlOpenHandles;
while (pfh != pfhEnd) {
pfh->fh_flags &= ~FHF_UNMOUNTED;
pfh = pfh->fh_dlOpenHandles.pfhNext;
}
}
CloseStream(pstm);
EnterCriticalSection(&pvol->v_csStms);
goto restart;
}
LeaveCriticalSection(&pvol->v_csStms);
// Make sure the buffer pool is clean too, now that we've finished
// resurrecting and committing all resurrectable streams.
if (CommitVolumeBuffers(pvol) == ERROR_SUCCESS) {
DEBUGMSG(ZONE_INIT && (pvol->v_flags & VOLF_DIRTY),(DBGTEXT("FATFS!RefreshVolume: dirty data successfully committed\r\n")));
pvol->v_flags &= ~VOLF_DIRTY;
}
else
DEBUGMSG(ZONE_INIT,(DBGTEXT("FATFS!RefreshVolume: unable to commit dirty data to volume 0x%08x\r\n"), pvol));
}
DWORD LockVolume(PVOLUME pvol, DWORD dwFlags)
{
DWORD dwError = ERROR_SUCCESS;
// pvol->v_flags |= dwFlags;
// return dwError;
EnterCriticalSection(&pvol->v_cs);
// Since VOLF_LOCKED is the concatenation of all lock flags, LockVolume
// is disallowed if any lock of any kind is already in effect. This
// simplification should be fine for our purposes.
if (!(pvol->v_flags & VOLF_LOCKED)) {
pvol->v_flags |= dwFlags;
if (CheckStreamHandles(pvol, NULL)) {
pvol->v_flags &= ~dwFlags;
dwError = ERROR_ACCESS_DENIED;
}
}
else
dwError = ERROR_DRIVE_LOCKED;
LeaveCriticalSection(&pvol->v_cs);
// If successful, wait until all threads are done before returning.
// Easiest way to do this is simulate a quick power-off/power-on sequence.
// Since the volume's LOCKED bit is already set, we don't need to worry about
// any new calls doing anything until the volume is unlocked.
if (!dwError && cFATThreads > 1) {
FAT_Notify(pvol, FSNOTIFY_POWER_OFF);
FAT_Notify(pvol, FSNOTIFY_DEVICES_ON);
}
return dwError;
}
/* UnlockVolume - Unlock a previously locked VOLUME
*
* ENTRY
* pvol -> VOLUME structure
*
* EXIT
* None
*/
void UnlockVolume(PVOLUME pvol)
{
// pvol->v_flags &= ~VOLF_LOCKED;
// return;
// We need to clear the volume's lock flag first, because if
// MountDisk decides to try to format it, it will need to be able
// to (re)lock the volume.
ASSERT(pvol->v_flags & VOLF_LOCKED);
pvol->v_flags &= ~VOLF_LOCKED;
if (pvol->v_flags & VOLF_MODIFIED) {
DWORD dwOldFlags;
HANDLE hdsk = pvol->v_pdsk->d_hdsk;
// Reinvigorate our data structures since it appears that the disk
// could have been significantly modified.
EnterCriticalSection(&csFATFS);
// Since the unmount/remount can cause the REMOUNTED or RECYCLED bits
// to be set, and since this could be called *within* an earlier mount,
// we don't want to lose the original bits for that earlier mount.
dwOldFlags = pvol->v_flags;
// We set the RETAIN bit, so that we don't have to worry about
// UnmountVolume freeing the current VOLUME structure. It will be
// reset by UnmountVolume as soon as CloseVolume has completed.
// (I used to set the FROZEN bit instead, but that doesn't get reset
// until much later -- when the volume is reopened by OpenVolume -- and
// it prevents legitimate ReadVolume/WriteVolume calls from working -JTP)
pvol->v_flags |= VOLF_RETAIN;
UnmountVolume(pvol, FALSE);
// When UnmountVolume called CloseVolume, CloseVolume froze the volume
// and set v_bMediaDesc to MAX_VOLUMES. We set it to zero now to insure
// that we will re-use the volume without delay.
pvol->v_bMediaDesc = 0;
if (pvol->v_flags & VOLF_FROZEN) {
pvol->v_pdsk->pVol = pvol;
pvol->v_flags &= ~VOLF_FROZEN;
}
#ifndef DEBUG
MountDisk(hdsk, NULL, pvol->v_flags);
#else
VERIFYTRUE(MountDisk(hdsk, NULL, pvol->v_flags));
#endif
// IMPORTANT NOTE: If the VOLF_FROZEN bit is *not* clear, then it's
// possible that MountDisk (which calls MountVolume) may have recycled
// the *wrong* volume (or allocated a completely new one), which means
// that we may have just leaked a VOLUME; at the very least, it probably
// means our current pvol pointer is stale.
// TODO: Yadhug
// ASSERT(!(pvol->v_flags & VOLF_FROZEN));
// Restore the REMOUNTED and RECYCLED bits to their former glory
pvol->v_flags &= ~(VOLF_REMOUNTED | VOLF_RECYCLED);
pvol->v_flags |= dwOldFlags & (VOLF_REMOUNTED | VOLF_RECYCLED);
LeaveCriticalSection(&csFATFS);
#if 0
if (pvol->v_volID > INVALID_AFS) {
DEREGISTERAFS(pvol);
pvol->v_volID = REGISTERAFS(pvol, pvol->v_volID);
}
#endif
}
}
/* OpenVolume - Allocate a VOLUME structure and validate volume
*
* ENTRY
* pdsk -> DSK structure
* ppi -> partition info, if any
* ppbgbs - pointer to address of PBR (partition boot record) for volume
* pstmParent - pointer to parent stream (only if MiniFAT volume)
*
* EXIT
* pointer to new VOLUME structure, or NULL if we couldn't make one
*/
PVOLUME OpenVolume(PDSK pdsk, PBIGFATBOOTSEC *ppbgbs, PDSTREAM pstmParent)
{
extern CONST WCHAR awcFlags[]; // From apis.c
extern CONST WCHAR awcUpdateAccess[]; // From apis.c
extern CONST WCHAR awcCodePage[]; // From apis.c
PVOLUME pvol;
ASSERT(pdsk->d_hdsk != INVALID_HANDLE_VALUE);
EnterCriticalSection(&csFATFS);
// Find a reusable VOLUME or allocate a new one.
pvol = FindVolume(pdsk, *ppbgbs);
if (!pvol)
goto exit;
EnterCriticalSection(&pvol->v_cs);
// 清除 相應的flag
pvol->v_flags &= ~(VOLF_FROZEN | VOLF_UNCERTAIN | VOLF_DIRTY_WARN);
pvol->v_flFATFS = FATFS_REGISTRY_FLAGS;
FSDMGR_GetRegistryValue((HDSK)pdsk->d_hdsk, awcFlags, &pvol->v_flFATFS);
FSDMGR_GetRegistryFlag((HDSK)pdsk->d_hdsk, awcUpdateAccess, &pvol->v_flFATFS, FATFS_UPDATE_ACCESS);
DEBUGMSGW(ZONE_INIT,(DBGTEXTW("FATFS!OpenVolume: access time updates %s\r\n"), pvol->v_flFATFS & FATFS_UPDATE_ACCESS? TEXTW("enabled") : TEXTW("disabled")));
DEBUGMSGW(ZONE_INIT,(DBGTEXTW("FATFS!OpenVolume: event logging %s\r\n"), pvol->v_flFATFS & FATFS_DISABLE_LOG? TEXTW("disabled") : TEXTW("enabled")));
DEBUGMSGW(ZONE_INIT,(DBGTEXTW("FATFS!OpenVolume: automatic scanning %s\r\n"), pvol->v_flFATFS & FATFS_DISABLE_AUTOSCAN? TEXTW("disabled") : TEXTW("enabled")));
DEBUGMSGW(ZONE_INIT,(DBGTEXTW("FATFS!OpenVolume: write verify %s\r\n"), pvol->v_flFATFS & FATFS_VERIFY_WRITES? TEXTW("enabled") : (pvol->v_flFATFS & FATFS_DISABLE_AUTOSCAN? TEXTW("disabled") : TEXTW("enabled on first 3 writes"))));
DEBUGMSGW(ZONE_INIT,(DBGTEXTW("FATFS!OpenVolume: extra FAT on format %s\r\n"), pvol->v_flFATFS & FATFS_ENABLE_BACKUP_FAT? TEXTW("enabled") : TEXTW("disabled")));
DEBUGMSGW(ZONE_INIT,(DBGTEXTW("FATFS!OpenVolume: force write through %s\r\n"), pvol->v_flFATFS & FATFS_FORCE_WRITETHROUGH? TEXTW("enabled") : TEXTW("disabled")));
if (!FSDMGR_GetRegistryValue((HDSK)pdsk->d_hdsk, awcCodePage, &pvol->v_nCodePage)) {
pvol->v_nCodePage = CP_OEMCP;
}
DEBUGMSG( ZONE_INIT,(DBGTEXTW("FATFS!OpenVolume: Codepage = %ld\r\n"), pvol->v_nCodePage));
// Get the number of path cache entries from the registry
if (!FSDMGR_GetRegistryValue((HDSK)pdsk->d_hdsk, awcPathCacheEntries, &pvol->v_cMaxCaches)) {
pvol->v_cMaxCaches = MAX_CACHE_PER_VOLUME;
}
DEBUGMSG( ZONE_INIT,(DBGTEXTW("FATFS!OpenVolume: Number of path cache entries = %ld\r\n"), pvol->v_cMaxCaches));
// Initialize the rest of the VOLUME structure now. This doesn't perform
// any I/O, and will return an error only if there is a problem allocating
// memory for either the FAT or root directory streams.
if (!InitVolume(pvol, *ppbgbs)) {
DEBUGMSG(ZONE_INIT || ZONE_ERRORS,(DBGTEXT("FATFS!OpenVolume: InitVolume failed, volume not opened!\r\n")));
CloseVolume(pvol, NULL);
pvol = NULL;
goto exit;
}
// Now make sure the volume is valid. This will set the INVALID bit if
// it isn't, but we will still register/mount the volume so that it can be
// made valid (ie, formatted) later.
TestVolume(pvol, ppbgbs);
exit:
LeaveCriticalSection(&csFATFS);
return pvol;
}
/* CloseVolume - Free a VOLUME structure (if no open handles)
*
* ENTRY
* pvol - pointer to VOLUME
* pwsVolName - pointer to volume name buffer (assumed to be MAX_PATH)
*
* EXIT
* TRUE if freed, FALSE if not. If not freed, then at a minimum,
* the disk handle is invalidated and the volume is marked FROZEN.
*
* NOTES
* The volume's critical section should be held by the caller,
* and is the caller's responsibility to unhold if this returns FALSE
* (ie, volume not freed).
*/
BOOL CloseVolume(PVOLUME pvol, PWSTR pwsVolName)
{
BOOL fSuccess = TRUE;
PDSTREAM pstm, pstmEnd;
PFHANDLE pfh, pfhEnd;
DEBUGMSG(ZONE_APIS,(DBGTEXT("FATFS!CloseVolume(0x%x)\r\n"), pvol));
ASSERT(pvol);
ASSERT(OWNCRITICALSECTION(&csFATFS));
ASSERT(OWNCRITICALSECTION(&pvol->v_cs));
#ifdef PATH_CACHING
// We destroy the path cache first, releasing any streams
// that it may have been holding onto, so that our assertion
// checks below don't give us false fits.
PathCacheDestroyAll(pvol);
#endif
// Walk the open stream list, and for each open stream, walk
// the open handle list, and for each open handle, mark it as
// unmounted. Streams with no open handles are immediately
// closed; the only streams that should fall into that category
// are the special streams for the FAT and root directory.
EnterCriticalSection(&pvol->v_csStms);
pstm = pvol->v_dlOpenStreams.pstmNext;
pstmEnd = (PDSTREAM)&pvol->v_dlOpenStreams;
while (pstm != pstmEnd) {
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -