亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? eqberdemo.html

?? This demo shows the BER performance of linear, decision feedback (DFE), and maximum likelihood seque
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
<html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">   <head>      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">         <!--This HTML is auto-generated from an M-file.To make changes, update the M-file and republish this document.      -->      <title>BER Performance of Several Equalizer Types</title>      <meta name="generator" content="MATLAB 7.0">      <meta name="date" content="2004-06-29">      <meta name="m-file" content="eqberdemo"><style>body {  background-color: white;  margin:10px;}h1 {  color: #990000;   font-size: x-large;}h2 {  color: #990000;  font-size: medium;}p.footer {  text-align: right;  font-size: xx-small;  font-weight: lighter;  font-style: italic;  color: gray;}pre.codeinput {  margin-left: 30px;}span.keyword {color: #0000FF}span.comment {color: #228B22}span.string {color: #A020F0}span.untermstring {color: #B20000}span.syscmd {color: #B28C00}pre.showbuttons {  margin-left: 30px;  border: solid black 2px;  padding: 4px;  background: #EBEFF3;}pre.codeoutput {  color: gray;  font-style: italic;}pre.error {  color: red;}/* Make the text shrink to fit narrow windows, but not stretch too far in wide windows.  On Gecko-based browsers, the shrink-to-fit doesn't work. */ p,h1,h2,div {  /* for MATLAB's browser */  width: 600px;  /* for Mozilla, but the "width" tag overrides it anyway */  max-width: 600px;  /* for IE */  width:expression(document.body.clientWidth > 620 ? "600px": "auto" );}    </style></head>   <body>      <h1>BER Performance of Several Equalizer Types</h1>      <introduction>         <p>This script shows the BER performance of several types of equalizers in a static channel with a null in the passband.  The            script constructs and implements a linear equalizer object and a decision feedback equalizer (DFE) object.  It also initializes            and invokes a maximum likelihood sequence estimation (MLSE) equalizer.  The MLSE equalizer is first invoked with perfect channel            knowledge, then with a straightforward but imperfect channel estimation technique.         </p>         <p>As the simulation progresses, it updates a BER plot for comparative analysis between the equalization methods.  It also shows            the signal spectra of the linearly equalized and DFE equalized signals.  It also shows the relative burstiness of the errors,            indicating that at low BERs, both the MLSE algorithm and the DFE algorithm suffer from error bursts.  In particular, the DFE            error performance is burstier with detected bits fed back than with correct bits fed back.  Finally, during the "imperfect"            MLSE portion of the simulation, it shows and dynamically updates the estimated channel response.         </p>         <p>This script relies on several other scripts and functions to perform link simulations over a range of Eb/No values.  These            files are as follows:         </p>         <p><a href="eqber_adaptive.html">eqber_adaptive</a> - a script that runs link simulations for linear and DFE equalizers         </p>         <p><a href="eqber_mlse.html">eqber_mlse</a> - a script that runs link simulations for ideal and imperfect MLSE equalizers         </p>         <p><a href="eqber_siggen.html">eqber_siggen</a>   - a script that generates a BPSK signal with no pulse shaping, then processes it through the channel and adds noise         </p>         <p>eqber_graphics - a function that generates and updates plots showing the performance of the linear, DFE, and MLSE equalizers.             Type "edit eqber_graphics" at the MATLAB command line to view this file.         </p>         <p>The scripts eqber_adaptive and eqber_mlse illustrate how to use adaptive and MLSE equalizers across multiple blocks of data            such that state information is retained between data blocks.         </p>         <p>To experiment with this demo, you can change such parameters as the channel impulse response, the number of equalizer tap            weights, the recursive least squares (RLS) forgetting factor, the least mean square (LMS) step size, the MLSE traceback length,            the error in estimated channel length, and the maximum number of errors collected at each Eb/No value.         </p>      </introduction>      <h2>Contents</h2>      <div>         <ul>            <li><a href="#1">Signal and channel parameters</a></li>            <li><a href="#2">Adaptive equalizer parameters</a></li>            <li><a href="#3">MLSE equalizer and channel estimation parameters, and initial visualization</a></li>            <li><a href="#4">Construct RLS and LMS linear and DFE equalizer objects.</a></li>            <li><a href="#5">Linear equalizer</a></li>            <li><a href="#6">Decision feedback equalizer</a></li>            <li><a href="#7">Ideal MLSE equalizer, with perfect channel knowledge</a></li>            <li><a href="#8">MLSE equalizer with an imperfect channel estimate</a></li>         </ul>      </div>      <h2>Signal and channel parameters<a name="1"></a></h2>      <p>Set parameters related to the signal and channel.  Use BPSK without any pulse shaping, and a 5-tap real-valued symmetric channel         impulse response.  (See section 10.2.3 of Digital Communications by J. Proakis for more details on the channel.)  Set initial         states of data and noise generators.  Set the Eb/No range.      </p><pre class="codeinput"><span class="comment">% System simulation parameters</span>Fs      = 1;      <span class="comment">% sampling frequency (notional)</span>nBits   = 2048;   <span class="comment">% number of BPSK symbols per vector</span>maxErrs = 50;     <span class="comment">% target number of errors at each Eb/No</span>maxBits = 1e8;    <span class="comment">% maximum number of symbols at each Eb/No</span><span class="comment">% Modulated signal parameters</span>M          = 2;            <span class="comment">% order of modulation</span>Rs         = Fs;           <span class="comment">% symbol rate</span>nSamp      = Fs/Rs;        <span class="comment">% samples per symbol</span>Rb         = Rs * log2(M); <span class="comment">% bit rate</span>dataState  = 999983;       <span class="comment">% initial state of data generator</span><span class="comment">% Channel parameters</span>chnl       = [0.227 0.460 0.688 0.460 0.227]';  <span class="comment">% channel impulse response</span>chnlLen    = length(chnl);      <span class="comment">% channel length, in samples</span>EbNo       = 0:14;              <span class="comment">% in dB</span>BER        = zeros(size(EbNo)); <span class="comment">% initialize values</span>noiseState = 999917;            <span class="comment">% initial state of noise generator</span></pre><h2>Adaptive equalizer parameters<a name="2"></a></h2>      <p>Set parameter values for the linear and DFE equalizers.  Use a 31-tap linear equalizer, and a DFE with 15 feedforward and         feedback taps.  Use the recursive least squares (RLS) algorithm for the first block of data to ensure rapid tap convergence.          Use the least mean square (LMS) algorithm thereafter to ensure rapid execution speed.      </p><pre class="codeinput"><span class="comment">% Linear equalizer parameters</span>nWts         = 31;       <span class="comment">% number of weights</span>algType1     = <span class="string">'rls'</span>;    <span class="comment">% RLS algorithm for first data block at each Eb/No</span>forgetFactor = 0.999999; <span class="comment">% parameter of RLS algorithm</span>algType2     = <span class="string">'lms'</span>;    <span class="comment">% LMS algorithm for remaining data blocks</span>stepSize     = 0.00001;  <span class="comment">% parameter of LMS algorithm</span><span class="comment">% DFE parameters - use same update algorithms as linear equalizer</span>nFwdWts      = 15;       <span class="comment">% number of feedforward weights</span>nFbkWts      = 15;       <span class="comment">% number of feedback weights</span></pre><h2>MLSE equalizer and channel estimation parameters, and initial visualization<a name="3"></a></h2>      <p>Set the parameters of the MLSE equalizer.  Use a traceback length of six times the length of the channel impulse response.          Initialize the equalizer states. Set the equalization mode to "continuous", to enable seamless equalization over multiple         blocks of data.  Use a cyclic prefix in the channel esimation technique, and set the length of the prefix.  Assume that the         estimated length of the channel impulse response is one sample longer than the actual length.      </p><pre class="codeinput"><span class="comment">% MLSE equalizer parameters</span>tbLen      = 30;                 <span class="comment">% MLSE equalizer traceback length</span>numStates  = M^(chnlLen-1);      <span class="comment">% number of trellis states</span>[mlseMetric, mlseStates, mlseInputs] = deal([]);const      = pskmod(0:M-1, M);   <span class="comment">% signal constellation</span>mlseType   = <span class="string">'ideal'</span>;            <span class="comment">% perfect channel estimates at first</span>mlseMode   = <span class="string">'cont'</span>;             <span class="comment">% no MLSE resets</span><span class="comment">% Channel estimation parameters</span>chnlEst = chnl;         <span class="comment">% perfect estimation initially</span>prefixLen = 2*chnlLen;  <span class="comment">% cyclic prefix length</span>excessEst = 1;          <span class="comment">% length of estimated channel impulse response</span>                        <span class="comment">% beyond the true length</span><span class="comment">% Initialize the graphics for the simulation.  Plot the unequalized channel</span><span class="comment">% frequency response, and the BER of an ideal BPSK system.</span>idealBER = berawgn(EbNo, <span class="string">'psk'</span>, M, <span class="string">'nondiff'</span>);[hBER, hLegend, legendString, hLinSpec, hDfeSpec, hErrs, <span class="keyword">...</span>    hText1, hText2, hFit, hEstPlot] = eqber_graphics(<span class="string">'init'</span>, chnl, EbNo, <span class="keyword">...</span>                                               idealBER, nBits);</pre><img vspace="5" hspace="5" src="eqberdemo_01.png"> <img vspace="5" hspace="5" src="eqberdemo_02.png"> <h2>Construct RLS and LMS linear and DFE equalizer objects.<a name="4"></a></h2>      <p>The RLS update algorithm is used to initially set the weights, and the LMS algorithm is used thereafter for speed purposes.</p><pre class="codeinput">alg1 = eval([algType1 <span class="string">'('</span> num2str(forgetFactor) <span class="string">')'</span>]);linEq1 = lineareq(nWts, alg1);alg2 = eval([algType2 <span class="string">'('</span> num2str(stepSize) <span class="string">')'</span>]);linEq2 = lineareq(nWts, alg2);[linEq1.RefTap, linEq2.RefTap] = <span class="keyword">...</span>    deal(round(nWts/2));    <span class="comment">% Set reference tap to center tap</span>[linEq1.ResetBeforeFiltering, linEq2.ResetBeforeFiltering] = <span class="keyword">...</span>    deal(0);                <span class="comment">% Maintain continuity between iterations</span>dfeEq1 = dfe(nFwdWts, nFbkWts, alg1);dfeEq2 = dfe(nFwdWts, nFbkWts, alg2);[dfeEq1.RefTap, dfeEq2.RefTap] = <span class="keyword">...</span>    deal(round(nFwdWts/2)); <span class="comment">% Set reference tap to center forward tap</span>[dfeEq1.ResetBeforeFiltering, dfeEq2.ResetBeforeFiltering] = <span class="keyword">...</span>    deal(0);                <span class="comment">% Maintain continuity between iterations</span></pre><h2>Linear equalizer<a name="5"></a></h2>      <p>Run the linear equalizer, and plot the equalized signal spectrum, the BER, and the burst error performance for each data block.          Note that as the Eb/No increases, the linearly equalized signal spectrum has a progressively deeper null.  This highlights         the fact that a linear equalizer must have many more taps to adequately equalize a channel with a deep null.  Note also that         the errors occur with small inter-error intervals, which is to be expected at such a high error rate.      </p>      <p>See <a href="eqber_adaptive.html">eqber_adaptive</a> for a listing of the simulation code for the adaptive equalizers.      </p><pre class="codeinput">firstRun = true;  <span class="comment">% flag to ensure known initial states for noise and data</span>eqType = <span class="string">'linear'</span>;eqber_adaptive;</pre><img vspace="5" hspace="5" src="eqberdemo_03.png"> <img vspace="5" hspace="5" src="eqberdemo_04.png"> <img vspace="5" hspace="5" src="eqberdemo_05.png"> <h2>Decision feedback equalizer<a name="6"></a></h2>      <p>Run the DFE, and plot the equalized signal spectrum, the BER, and the burst error performance for each data block.  Note that         the DFE is much better able to mitigate the channel null than the linear equalizer, as shown in the spectral plot and the         BER plot.  The plotted BER points at a given Eb/No value are updated every data block, so they move up or down depending on         the number of errors collected in that block.  Note also that the DFE errors are somewhat bursty, due to the error propagation         caused by feeding back detected bits instead of correct bits. The burst error plot shows that as the BER decreases, a significant         number of errors occurs with an inter-error arrival of five bits or less.  (If the DFE equalizer were run in training mode         at all times, the errors would be far less bursty.)      </p>      <p>For every data block, the plot also indicates the average inter-error interval if those errors were randomly occurring.</p>      <p>See <a href="eqber_adaptive.html">eqber_adaptive</a> for a listing of the simulation code for the adaptive equalizers.      </p><pre class="codeinput">eqType = <span class="string">'dfe'</span>;eqber_adaptive;</pre><img vspace="5" hspace="5" src="eqberdemo_06.png"> <img vspace="5" hspace="5" src="eqberdemo_07.png"> <img vspace="5" hspace="5" src="eqberdemo_08.png"> <h2>Ideal MLSE equalizer, with perfect channel knowledge<a name="7"></a></h2>      <p>Run the MLSE equalizer with a perfect channel estimate, and plot the BER and the burst error performance for each data block.          Note that the errors occur in an extremely bursty fashion.  Observe, particularly at low BERs, that the overwhelming percentage         of errors occur with an inter-error interval of one or two bits.      </p>      <p>See <a href="eqber_mlse.html">eqber_mlse</a> for a listing of the simulation code for the MLSE equalizers.      </p><pre class="codeinput">eqType = <span class="string">'mlse'</span>;mlseType = <span class="string">'ideal'</span>;eqber_mlse;</pre><img vspace="5" hspace="5" src="eqberdemo_09.png"> <img vspace="5" hspace="5" src="eqberdemo_10.png"> <h2>MLSE equalizer with an imperfect channel estimate<a name="8"></a></h2>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国内成人免费视频| 久久av老司机精品网站导航| 久久综合九色综合97婷婷| 欧美精品vⅰdeose4hd| 欧美亚洲综合另类| 欧美日韩精品一区二区三区| 欧美午夜影院一区| 欧美一区二区视频免费观看| 在线综合视频播放| 精品欧美一区二区久久| 久久久精品综合| 日韩毛片高清在线播放| 亚洲国产日日夜夜| 琪琪一区二区三区| 国产电影一区二区三区| 97精品国产97久久久久久久久久久久| 色综合欧美在线视频区| 欧美日韩激情一区二区三区| 日韩欧美专区在线| 国产午夜精品久久| 一区二区三区四区激情| 日韩成人一区二区三区在线观看| 精品在线观看免费| 成人亚洲一区二区一| 色综合视频一区二区三区高清| 在线观看视频一区二区 | 国产精品全国免费观看高清| 亚洲国产高清aⅴ视频| 亚洲成a人片在线观看中文| 国产一区在线看| 日本电影亚洲天堂一区| 亚洲精品一线二线三线| 亚洲欧美在线视频观看| 另类欧美日韩国产在线| 99久久国产综合精品麻豆| 欧美一区二区免费视频| 国产精品人妖ts系列视频| 日韩av高清在线观看| 成人综合婷婷国产精品久久蜜臀| 欧美日韩精品欧美日韩精品一综合| 欧美成人国产一区二区| 亚洲人成伊人成综合网小说| 麻豆专区一区二区三区四区五区| 一本久道中文字幕精品亚洲嫩 | 久久99热狠狠色一区二区| 91在线视频播放| 久久免费国产精品| 日本在线不卡一区| 欧美亚洲图片小说| 亚洲欧洲日韩综合一区二区| 捆绑紧缚一区二区三区视频| 欧美午夜寂寞影院| 亚洲色欲色欲www在线观看| 狠狠色2019综合网| 日韩亚洲电影在线| 日本成人在线视频网站| 欧美日韩在线播放三区四区| 中文字幕一区二区三区在线不卡| 国产久卡久卡久卡久卡视频精品| 日韩一级二级三级精品视频| 婷婷国产在线综合| 欧美日韩精品高清| 午夜精品福利一区二区三区av| 91福利国产成人精品照片| 中文字幕国产一区| 成人av电影在线网| 日本一区二区三区免费乱视频| 极品销魂美女一区二区三区| 欧美一区二区视频在线观看2020| 亚洲成a人片在线不卡一二三区 | 国产精品自拍av| 日韩精品一区二区三区在线观看 | 久久久99精品免费观看不卡| 黄一区二区三区| 精品对白一区国产伦| 久久精品国产亚洲高清剧情介绍| 日韩三级精品电影久久久| 久久成人羞羞网站| 国产精品2024| 欧美大片顶级少妇| 久久99国产精品免费| 久久久久国产一区二区三区四区 | 精品污污网站免费看| 国产成人在线视频网址| 奇米四色…亚洲| 亚洲福利一区二区| 亚洲男同性视频| 国产精品国产三级国产有无不卡| 欧美mv和日韩mv的网站| 欧美日韩激情一区二区| 91日韩精品一区| av在线播放一区二区三区| 国产精品一二二区| 精品午夜久久福利影院| 天天操天天综合网| 亚洲成av人片一区二区梦乃| 亚洲欧美另类综合偷拍| 亚洲欧洲在线观看av| 欧美激情在线看| 2024国产精品视频| 欧美tickling网站挠脚心| 日韩一二在线观看| 欧美日本国产一区| 5858s免费视频成人| 欧美精品久久99| 在线播放91灌醉迷j高跟美女| 在线免费视频一区二区| 色婷婷一区二区| 91黄色免费网站| 色综合久久88色综合天天免费| 99久久夜色精品国产网站| zzijzzij亚洲日本少妇熟睡| 成人精品gif动图一区| av激情综合网| 91免费版在线看| 欧美色窝79yyyycom| 欧美日韩美女一区二区| 欧美高清视频在线高清观看mv色露露十八 | 蜜桃一区二区三区四区| 日韩国产欧美视频| 毛片一区二区三区| 精品一区二区三区欧美| 国产在线看一区| 国产精品456露脸| av一区二区久久| 91国偷自产一区二区开放时间| 91久久人澡人人添人人爽欧美| 91久久精品网| 91精品国产一区二区| 欧美电影免费观看高清完整版在| 欧美va亚洲va香蕉在线| 中文字幕电影一区| 亚洲欧美国产毛片在线| 亚洲成av人片一区二区| 国内精品伊人久久久久影院对白| 国产在线播放一区| 91一区二区三区在线观看| 欧美挠脚心视频网站| 久久男人中文字幕资源站| 国产精品久久久久久久久搜平片| 亚洲精品欧美激情| 日日夜夜精品免费视频| 国产馆精品极品| 欧美日韩一级片网站| 久久人人97超碰com| 一区二区激情视频| 美女视频黄 久久| 99国内精品久久| 亚洲欧美自拍偷拍| 亚洲成人7777| 不卡一区中文字幕| 91精品国产综合久久久久久久久久| 精品入口麻豆88视频| 中文字幕亚洲一区二区av在线| 亚洲一区在线观看视频| 国产精品一区专区| 欧美日韩一区二区在线观看| 久久久综合视频| 亚洲国产精品精华液网站| 国产精品白丝av| 6080国产精品一区二区| 亚洲欧洲成人av每日更新| 美女网站在线免费欧美精品| 91在线观看免费视频| 精品国产凹凸成av人网站| 夜夜嗨av一区二区三区中文字幕 | www久久精品| 亚洲区小说区图片区qvod| 国产精品亚洲第一| 在线不卡欧美精品一区二区三区| 国产精品久久久久毛片软件| 精品一区二区国语对白| 欧美日韩电影在线| 亚洲精品中文字幕乱码三区| 国产激情视频一区二区在线观看 | 色综合久久中文字幕综合网| 欧美成人午夜电影| 亚洲国产精品久久久久婷婷884 | 欧美日本乱大交xxxxx| 综合精品久久久| 国产精品一区三区| 久久国产日韩欧美精品| 在线精品视频小说1| 亚洲同性gay激情无套| 国产精品一区二区x88av| 日韩精品一区二| 色综合久久中文综合久久97| 国产精品女同一区二区三区| 国产一区欧美二区| 精品入口麻豆88视频| 日本免费在线视频不卡一不卡二| 欧美午夜影院一区| 亚洲国产精品久久人人爱| 在线视频一区二区三| 一区二区免费在线播放| 色久综合一二码| 亚洲一二三区不卡| 欧美日韩国产美| 免费高清在线一区| 精品国产一区二区三区不卡|