亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? eqberdemo.html

?? This demo shows the BER performance of linear, decision feedback (DFE), and maximum likelihood seque
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
      <p>Run the MLSE equalizer with an imperfect channel estimate, and plot the BER and the burst error performance for each data         block.  These results align fairly closely with the ideal MLSE results.  (The channel estimation algorithm is highly dependent         on the data, such that an FFT of a transmitted data block has no nulls.)  Note how the estimated channel plots compare with         the actual channel spectrum plot.      </p>      <p>See <a href="eqber_mlse.html">eqber_mlse</a> for a listing of the simulation code for the MLSE equalizers.      </p><pre class="codeinput">mlseType = <span class="string">'imperfect'</span>;eqber_mlse;</pre><img vspace="5" hspace="5" src="eqberdemo_11.png"> <img vspace="5" hspace="5" src="eqberdemo_12.png"> <img vspace="5" hspace="5" src="eqberdemo_13.png"> <p class="footer">Copyright 1996-2004 The MathWorks, Inc.<br>         Published with MATLAB&reg; 7.0<br></p>      <!--##### SOURCE BEGIN #####%% BER Performance of Several Equalizer Types% This script shows the BER performance of several types of equalizers in a% static channel with a null in the passband.  The script constructs and% implements a linear equalizer object and a decision feedback equalizer (DFE)% object.  It also initializes and invokes a maximum likelihood sequence% estimation (MLSE) equalizer.  The MLSE equalizer is first invoked with perfect% channel knowledge, then with a straightforward but imperfect channel% estimation technique.%% As the simulation progresses, it updates a BER plot for comparative analysis% between the equalization methods.  It also shows the signal spectra of the% linearly equalized and DFE equalized signals.  It also shows the relative% burstiness of the errors, indicating that at low BERs, both the MLSE algorithm% and the DFE algorithm suffer from error bursts.  In particular, the DFE error% performance is burstier with detected bits fed back than with correct bits fed% back.  Finally, during the "imperfect" MLSE portion of the simulation, it% shows and dynamically updates the estimated channel response.%% This script relies on several other scripts and functions to perform link% simulations over a range of Eb/No values.  These files are as follows:%% <eqber_adaptive.html eqber_adaptive> - a script that runs link% simulations for linear and DFE equalizers%% <eqber_mlse.html eqber_mlse> - a script that runs link simulations% for ideal and imperfect MLSE equalizers%% <eqber_siggen.html eqber_siggen>   - a script that generates a BPSK% signal with no pulse shaping, then processes it through the channel and adds% noise%% eqber_graphics - a function that generates and updates plots showing the% performance of the linear, DFE, and MLSE equalizers.  Type "edit% eqber_graphics" at the MATLAB command line to view this file.%% The scripts eqber_adaptive and eqber_mlse illustrate how to use adaptive and% MLSE equalizers across multiple blocks of data such that state information is% retained between data blocks.%% To experiment with this demo, you can change such parameters as the channel% impulse response, the number of equalizer tap weights, the recursive least% squares (RLS) forgetting factor, the least mean square (LMS) step size, the% MLSE traceback length, the error in estimated channel length, and the maximum% number of errors collected at each Eb/No value.%   Copyright 1996-2004 The MathWorks, Inc.%   $Revision: 1.1.4.1 $  $Date: 2004/06/30 23:03:16 $%% Signal and channel parameters% Set parameters related to the signal and channel.  Use BPSK without any pulse% shaping, and a 5-tap real-valued symmetric channel impulse response.  (See% section 10.2.3 of Digital Communications by J. Proakis for more details on the% channel.)  Set initial states of data and noise generators.  Set the Eb/No% range.% System simulation parametersFs      = 1;      % sampling frequency (notional)nBits   = 2048;   % number of BPSK symbols per vectormaxErrs = 50;     % target number of errors at each Eb/NomaxBits = 1e8;    % maximum number of symbols at each Eb/No% Modulated signal parametersM          = 2;            % order of modulationRs         = Fs;           % symbol ratenSamp      = Fs/Rs;        % samples per symbolRb         = Rs * log2(M); % bit ratedataState  = 999983;       % initial state of data generator% Channel parameterschnl       = [0.227 0.460 0.688 0.460 0.227]';  % channel impulse responsechnlLen    = length(chnl);      % channel length, in samplesEbNo       = 0:14;              % in dBBER        = zeros(size(EbNo)); % initialize valuesnoiseState = 999917;            % initial state of noise generator%% Adaptive equalizer parameters% Set parameter values for the linear and DFE equalizers.  Use a 31-tap linear% equalizer, and a DFE with 15 feedforward and feedback taps.  Use the recursive% least squares (RLS) algorithm for the first block of data to ensure rapid tap% convergence.  Use the least mean square (LMS) algorithm thereafter to ensure% rapid execution speed.% Linear equalizer parametersnWts         = 31;       % number of weightsalgType1     = 'rls';    % RLS algorithm for first data block at each Eb/NoforgetFactor = 0.999999; % parameter of RLS algorithmalgType2     = 'lms';    % LMS algorithm for remaining data blocksstepSize     = 0.00001;  % parameter of LMS algorithm% DFE parameters - use same update algorithms as linear equalizernFwdWts      = 15;       % number of feedforward weights nFbkWts      = 15;       % number of feedback weights%% MLSE equalizer and channel estimation parameters, and initial visualization% Set the parameters of the MLSE equalizer.  Use a traceback length of six times% the length of the channel impulse response.  Initialize the equalizer states.% Set the equalization mode to "continuous", to enable seamless equalization% over multiple blocks of data.  Use a cyclic prefix in the channel esimation% technique, and set the length of the prefix.  Assume that the estimated length% of the channel impulse response is one sample longer than the actual length.% MLSE equalizer parameterstbLen      = 30;                 % MLSE equalizer traceback lengthnumStates  = M^(chnlLen-1);      % number of trellis states[mlseMetric, mlseStates, mlseInputs] = deal([]);const      = pskmod(0:M-1, M);   % signal constellationmlseType   = 'ideal';            % perfect channel estimates at firstmlseMode   = 'cont';             % no MLSE resets% Channel estimation parameterschnlEst = chnl;         % perfect estimation initiallyprefixLen = 2*chnlLen;  % cyclic prefix lengthexcessEst = 1;          % length of estimated channel impulse response                        % beyond the true length% Initialize the graphics for the simulation.  Plot the unequalized channel% frequency response, and the BER of an ideal BPSK system.idealBER = berawgn(EbNo, 'psk', M, 'nondiff');[hBER, hLegend, legendString, hLinSpec, hDfeSpec, hErrs, ...    hText1, hText2, hFit, hEstPlot] = eqber_graphics('init', chnl, EbNo, ...                                               idealBER, nBits);%% Construct RLS and LMS linear and DFE equalizer objects.% The RLS update algorithm is used to initially set the weights, and the LMS% algorithm is used thereafter for speed purposes.alg1 = eval([algType1 '(' num2str(forgetFactor) ')']);linEq1 = lineareq(nWts, alg1);alg2 = eval([algType2 '(' num2str(stepSize) ')']);linEq2 = lineareq(nWts, alg2);[linEq1.RefTap, linEq2.RefTap] = ...    deal(round(nWts/2));    % Set reference tap to center tap[linEq1.ResetBeforeFiltering, linEq2.ResetBeforeFiltering] = ...    deal(0);                % Maintain continuity between iterationsdfeEq1 = dfe(nFwdWts, nFbkWts, alg1);dfeEq2 = dfe(nFwdWts, nFbkWts, alg2);[dfeEq1.RefTap, dfeEq2.RefTap] = ...    deal(round(nFwdWts/2)); % Set reference tap to center forward tap[dfeEq1.ResetBeforeFiltering, dfeEq2.ResetBeforeFiltering] = ...    deal(0);                % Maintain continuity between iterations%% Linear equalizer% Run the linear equalizer, and plot the equalized signal spectrum, the BER, and% the burst error performance for each data block.  Note that as the Eb/No% increases, the linearly equalized signal spectrum has a progressively deeper% null.  This highlights the fact that a linear equalizer must have many more% taps to adequately equalize a channel with a deep null.  Note also that the% errors occur with small inter-error intervals, which is to be expected at such% a high error rate.%% See <eqber_adaptive.html eqber_adaptive> for a listing of the simulation code% for the adaptive equalizers.firstRun = true;  % flag to ensure known initial states for noise and dataeqType = 'linear';eqber_adaptive;%% Decision feedback equalizer% Run the DFE, and plot the equalized signal spectrum, the BER, and the burst% error performance for each data block.  Note that the DFE is much better able% to mitigate the channel null than the linear equalizer, as shown in the% spectral plot and the BER plot.  The plotted BER points at a given Eb/No value% are updated every data block, so they move up or down depending on the number% of errors collected in that block.  Note also that the DFE errors are somewhat% bursty, due to the error propagation caused by feeding back detected bits% instead of correct bits. The burst error plot shows that as the BER decreases,% a significant number of errors occurs with an inter-error arrival of five bits% or less.  (If the DFE equalizer were run in training mode at all times, the% errors would be far less bursty.)  %% For every data block, the plot also indicates the average inter-error interval% if those errors were randomly occurring.%% See <eqber_adaptive.html eqber_adaptive> for a listing of the simulation code% for the adaptive equalizers.eqType = 'dfe';eqber_adaptive; %% Ideal MLSE equalizer, with perfect channel knowledge% Run the MLSE equalizer with a perfect channel estimate, and plot the BER and% the burst error performance for each data block.  Note that the errors occur% in an extremely bursty fashion.  Observe, particularly at low BERs, that the% overwhelming percentage of errors occur with an inter-error interval of one or% two bits.%% See <eqber_mlse.html eqber_mlse> for a listing of the simulation code% for the MLSE equalizers.eqType = 'mlse';mlseType = 'ideal';eqber_mlse;%% MLSE equalizer with an imperfect channel estimate% Run the MLSE equalizer with an imperfect channel estimate, and plot the BER% and the burst error performance for each data block.  These results align% fairly closely with the ideal MLSE results.  (The channel estimation algorithm% is highly dependent on the data, such that an FFT of a transmitted data block% has no nulls.)  Note how the estimated channel plots compare with the actual% channel spectrum plot.%% See <eqber_mlse.html eqber_mlse> for a listing of the simulation code% for the MLSE equalizers.mlseType = 'imperfect';eqber_mlse;##### SOURCE END #####-->   </body></html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产美女精品一区二区三区| 不卡av免费在线观看| 欧美影院精品一区| 中文字幕一区不卡| 亚洲综合自拍偷拍| 久久一留热品黄| 日韩丝袜美女视频| 欧洲一区二区三区免费视频| 日韩1区2区3区| 欧美久久久久中文字幕| 日本中文字幕一区| 久久综合久色欧美综合狠狠| 黄色小说综合网站| 国产精品久久久一本精品| 99精品欧美一区二区三区小说 | 一区二区三区国产豹纹内裤在线| 99精品欧美一区二区蜜桃免费| 亚洲综合视频网| 日韩欧美国产1| 国产丝袜欧美中文另类| 欧美日韩一区二区三区免费看| 国产欧美日韩久久| 日本丶国产丶欧美色综合| 奇米影视7777精品一区二区| 久久久777精品电影网影网| 成人免费高清视频在线观看| 亚洲高清不卡在线观看| www久久久久| 97久久精品人人做人人爽| 亚洲午夜在线视频| 久久午夜老司机| 欧美在线色视频| 精品一区二区精品| 亚洲欧美成人一区二区三区| 91精品欧美一区二区三区综合在 | 色诱视频网站一区| 天使萌一区二区三区免费观看| 久久亚洲精品国产精品紫薇| 91黄视频在线| 国产伦精品一区二区三区免费 | 亚洲精品日韩一| 国产欧美精品日韩区二区麻豆天美| 天天av天天翘天天综合网| 精品免费视频一区二区| 成人免费视频一区| 蜜臀av在线播放一区二区三区| 亚洲欧美另类久久久精品2019| 精品国产成人系列| 欧美猛男男办公室激情| 成人激情视频网站| 美女被吸乳得到大胸91| 亚洲小说欧美激情另类| 中文字幕乱码一区二区免费| 555www色欧美视频| 91高清在线观看| 国产91丝袜在线18| 久久精品国产免费看久久精品| 亚洲精品亚洲人成人网| 国产精品天美传媒| 久久久久久免费网| 日韩欧美一二区| 国产精品福利电影一区二区三区四区| 在线播放亚洲一区| 欧美三级欧美一级| 欧美三区在线观看| 紧缚捆绑精品一区二区| 久久久蜜臀国产一区二区| 一本一道久久a久久精品综合蜜臀| 国产精品一区二区三区网站| 美女网站一区二区| 日本特黄久久久高潮| 亚洲国产欧美在线| 亚洲自拍偷拍综合| 亚洲码国产岛国毛片在线| 中文字幕一区三区| 中日韩免费视频中文字幕| 国产欧美视频一区二区| 国产精品午夜久久| 国产精品视频一二| 国产精品第13页| 亚洲欧美中日韩| 亚洲人吸女人奶水| 亚洲一区二区三区爽爽爽爽爽 | 亚洲少妇屁股交4| 国产精品免费av| 综合激情网...| 亚洲老妇xxxxxx| 亚洲成年人影院| 日韩精品1区2区3区| 日韩av不卡在线观看| 精品亚洲成a人| 国产精品99久久久久久久vr| 不卡一二三区首页| 色婷婷狠狠综合| 欧美高清hd18日本| 精品剧情在线观看| 中文字幕av在线一区二区三区| 国产精品无码永久免费888| 亚洲精品伦理在线| 天天综合天天综合色| 久久狠狠亚洲综合| 成人h动漫精品一区二| 色婷婷亚洲一区二区三区| 欧美日韩免费观看一区三区| 日韩欧美国产一区二区三区 | 欧美一级艳片视频免费观看| 日韩视频在线一区二区| 久久精品亚洲麻豆av一区二区| 国产精品对白交换视频| 调教+趴+乳夹+国产+精品| 久久国产免费看| 91免费视频网| 日韩一区二区三区免费看| 欧美精彩视频一区二区三区| 亚洲一区二区三区在线播放| 狠狠色狠狠色综合系列| 99久久er热在这里只有精品15| 欧美日韩高清一区二区三区| 久久蜜桃av一区精品变态类天堂| 日韩理论片中文av| 狠狠色狠狠色综合系列| 欧美亚洲图片小说| 国产亚洲自拍一区| 日韩高清在线电影| 99国产精品久久久久久久久久| 欧美浪妇xxxx高跟鞋交| 一区在线中文字幕| 久久精品国产77777蜜臀| 一本久久综合亚洲鲁鲁五月天 | 国产成人小视频| 884aa四虎影成人精品一区| 欧美国产日韩a欧美在线观看| 亚洲午夜精品在线| 波多野结衣中文字幕一区二区三区| 欧美综合久久久| 欧美国产激情一区二区三区蜜月| 午夜欧美电影在线观看| 97se亚洲国产综合自在线观| 欧美α欧美αv大片| 香蕉av福利精品导航| 99久久99久久精品免费观看| 精品国产sm最大网站| 亚洲mv在线观看| 99riav久久精品riav| 久久毛片高清国产| 毛片一区二区三区| 欧美日韩另类国产亚洲欧美一级| 国产精品免费免费| 丰满少妇久久久久久久| 精品国产91乱码一区二区三区 | 亚洲三级视频在线观看| 国产传媒欧美日韩成人| 日韩精品中文字幕在线一区| 视频一区中文字幕国产| 欧美视频在线一区| 夜色激情一区二区| 91亚洲精品一区二区乱码| 国产精品卡一卡二卡三| 国产91对白在线观看九色| 精品国产第一区二区三区观看体验 | 亚洲精品少妇30p| 99热精品一区二区| **网站欧美大片在线观看| 国产成a人亚洲| 久久在线免费观看| 国产一区二区三区四区五区入口| 日韩一区二区精品在线观看| 日韩黄色免费电影| 日韩一区二区三区在线视频| 日本亚洲天堂网| 日韩午夜激情电影| 久久91精品久久久久久秒播| 精品国产成人系列| 国产尤物一区二区在线| 国产亚洲一区二区在线观看| 国产寡妇亲子伦一区二区| 国产日韩欧美高清| av动漫一区二区| 一区二区三区在线不卡| 欧美三级电影精品| 蜜桃av一区二区在线观看| 欧美精品一区二区三区一线天视频| 久久国产精品99精品国产 | 国产成人午夜视频| 日韩理论在线观看| 欧美美女网站色| 久久国产综合精品| 欧美激情在线免费观看| 91日韩在线专区| 亚洲mv大片欧洲mv大片精品| 日韩色在线观看| 国产成人免费9x9x人网站视频| 中文字幕一区二区三区在线不卡| 在线精品视频一区二区| 日韩av电影天堂| 国产欧美精品国产国产专区| 91视频你懂的| 日韩有码一区二区三区| 久久精品在这里| 91麻豆视频网站|