?? perform_alpert_transform_2d.m
字號:
function [w,info] = perform_alpert_transform_2d(v,pos,alpert_vm, dir, options)
% perform_alpert_transform_2d - transform a 2D signal.
%
%
% [w,info] = perform_alpert_transform_2d(v,pos,alpert_vm, dir, options);
%
% 'v' is a 1D vector, the value of the function at each sampling location.
% 'pos' is a 2D vector, pos(:,i) is the ith point.
% 'alpert_vm' is the number of vanishing moments (1=>Haar, 2=>linear basis ...).
% * 'alpert_vm' can be an integer, and then the algorithm will use the same
% order for X and Y direction.
% * 'alpert_vm' can be a couple of integer alpert_vm=[kx,ky] and 'kx' will be the
% order on the X direction, and 'ky' the order on the Y direction.
% * 'alpert_vm' can be a set of monomial, see below ('degree_type') for
% further comments.
% 'dir' is 1 for fwd transform and -1 for bwd.
%
% 'options' is a structure that can contains the followind field :
% 'degree_type' : Polynomial degree. By default, the multiresolution spaces are defined
% as piecewise polynimals P that satisfy
% degX(P)<alpert_vm(1) and degY(P)<alpert_vm(2).
% If you want to use spaces defined by
% degX(P)+degY(P) < alpert_vm(1)
% then you should specify degree_type='sum'
% (default is degree_type='max').
% If you want to define your own multiresolution space,
% you can provide your own monomials in 'alpert_vm' and then
% set degree_type='user_defined'. It's a bit tricky
% because you have to provide an even number of monomials,
% twice more than needed. Suppose you want to use
% as multiresolution basis the polynomials {1,X}, then you can set
% alpert_vm = [[0;0],[1;0],[0;1],[1;1]];
% 'part_type': for automatic partition, the way the algorithm
% will perform the grouping (can be either '1axis', '2axis' or 'kmeans',
% type 'help dichotomic_grouping' for more info).
% 'part': if you don't want to use automatic grouping, then
% you can provide a cell array that contains a binary grouping of the points
% (same format as 'dichotomic_grouping' function).
%
% 'w' is the transformed data.
% 'info' is a struct containing the localisation information for each
% basis Alpert vector.
% 'info.l' is the scale of the vector (0=coarse scale).
% 'info.n' is the space location of the vector.
% 'info.k' is the number of multiwavelet (in [1,...,alpert_vm(1)*alpert_vm(2)]).
%
% WARNING: the function will try to use the mex-compiled function
% perform_moment_transform.dll if possible, and then it
% won't retrun 'info'. Otherwise, it will use the slower
% function 'perform_moment_transform_slow' and
% 'info' will be returned.
%
% Copyright (c) 2004 Gabriel Peyr
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -