亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? svm_learn.c

?? Support Vector Machine Light
?? C
?? 第 1 頁 / 共 5 頁
字號:
/***********************************************************************/
/*                                                                     */
/*   svm_learn.c                                                       */
/*                                                                     */
/*   Learning module of Support Vector Machine.                        */
/*                                                                     */
/*   Author: Thorsten Joachims                                         */
/*   Date: 02.07.02                                                    */
/*                                                                     */
/*   Copyright (c) 2002  Thorsten Joachims - All rights reserved       */
/*                                                                     */
/*   This software is available for non-commercial use only. It must   */
/*   not be modified and distributed without prior permission of the   */
/*   author. The author is not responsible for implications from the   */
/*   use of this software.                                             */
/*                                                                     */
/***********************************************************************/


# include "svm_common.h"
# include "svm_learn.h"


/* interface to QP-solver */
double *optimize_qp(QP *, double *, long, double *, LEARN_PARM *);

/*---------------------------------------------------------------------------*/

/* Learns an SVM classification model based on the training data in
   docs/label. The resulting model is returned in the structure
   model. */

void svm_learn_classification(DOC **docs, double *class, long int
			      totdoc, long int totwords, 
			      LEARN_PARM *learn_parm, 
			      KERNEL_PARM *kernel_parm, 
			      KERNEL_CACHE *kernel_cache, 
			      MODEL *model,
			      double *alpha)
     /* docs:        Training vectors (x-part) */
     /* class:       Training labels (y-part, zero if test example for
                     transduction) */
     /* totdoc:      Number of examples in docs/label */
     /* totwords:    Number of features (i.e. highest feature index) */
     /* learn_parm:  Learning paramenters */
     /* kernel_parm: Kernel paramenters */
     /* kernel_cache:Initialized Cache of size totdoc, if using a kernel. 
                     NULL if linear.*/
     /* model:       Returns learning result (assumed empty before called) */
     /* alpha:       Start values for the alpha variables or NULL
	             pointer. The new alpha values are returned after 
		     optimization if not NULL. Array must be of size totdoc. */
{
  long *inconsistent,i,*label;
  long inconsistentnum;
  long misclassified,upsupvecnum;
  double loss,model_length,example_length;
  double maxdiff,*lin,*a,*c;
  long runtime_start,runtime_end;
  long iterations;
  long *unlabeled,transduction;
  long heldout;
  long loo_count=0,loo_count_pos=0,loo_count_neg=0,trainpos=0,trainneg=0;
  long loocomputed=0,runtime_start_loo=0,runtime_start_xa=0;
  double heldout_c=0,r_delta_sq=0,r_delta,r_delta_avg;
  long *index,*index2dnum;
  double *weights;
  CFLOAT *aicache;  /* buffer to keep one row of hessian */

  double *xi_fullset; /* buffer for storing xi on full sample in loo */
  double *a_fullset;  /* buffer for storing alpha on full sample in loo */
  TIMING timing_profile;
  SHRINK_STATE shrink_state;

  runtime_start=get_runtime();
  timing_profile.time_kernel=0;
  timing_profile.time_opti=0;
  timing_profile.time_shrink=0;
  timing_profile.time_update=0;
  timing_profile.time_model=0;
  timing_profile.time_check=0;
  timing_profile.time_select=0;
  kernel_cache_statistic=0;

  learn_parm->totwords=totwords;

  /* make sure -n value is reasonable */
  if((learn_parm->svm_newvarsinqp < 2) 
     || (learn_parm->svm_newvarsinqp > learn_parm->svm_maxqpsize)) {
    learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize;
  }

  init_shrink_state(&shrink_state,totdoc,(long)MAXSHRINK);

  label = (long *)my_malloc(sizeof(long)*totdoc);
  inconsistent = (long *)my_malloc(sizeof(long)*totdoc);
  unlabeled = (long *)my_malloc(sizeof(long)*totdoc);
  c = (double *)my_malloc(sizeof(double)*totdoc);
  a = (double *)my_malloc(sizeof(double)*totdoc);
  a_fullset = (double *)my_malloc(sizeof(double)*totdoc);
  xi_fullset = (double *)my_malloc(sizeof(double)*totdoc);
  lin = (double *)my_malloc(sizeof(double)*totdoc);
  learn_parm->svm_cost = (double *)my_malloc(sizeof(double)*totdoc);
  model->supvec = (DOC **)my_malloc(sizeof(DOC *)*(totdoc+2));
  model->alpha = (double *)my_malloc(sizeof(double)*(totdoc+2));
  model->index = (long *)my_malloc(sizeof(long)*(totdoc+2));

  model->at_upper_bound=0;
  model->b=0;	       
  model->supvec[0]=0;  /* element 0 reserved and empty for now */
  model->alpha[0]=0;
  model->lin_weights=NULL;
  model->totwords=totwords;
  model->totdoc=totdoc;
  model->kernel_parm=(*kernel_parm);
  model->sv_num=1;
  model->loo_error=-1;
  model->loo_recall=-1;
  model->loo_precision=-1;
  model->xa_error=-1;
  model->xa_recall=-1;
  model->xa_precision=-1;
  inconsistentnum=0;
  transduction=0;

  r_delta=estimate_r_delta(docs,totdoc,kernel_parm);
  r_delta_sq=r_delta*r_delta;

  r_delta_avg=estimate_r_delta_average(docs,totdoc,kernel_parm);
  if(learn_parm->svm_c == 0.0) {  /* default value for C */
    learn_parm->svm_c=1.0/(r_delta_avg*r_delta_avg);
    if(verbosity>=1) 
      printf("Setting default regularization parameter C=%.4f\n",
	     learn_parm->svm_c);
  }

  learn_parm->eps=-1.0;      /* equivalent regression epsilon for
				classification */

  for(i=0;i<totdoc;i++) {    /* various inits */
    docs[i]->docnum=i;
    inconsistent[i]=0;
    a[i]=0;
    lin[i]=0;
    c[i]=0.0;
    unlabeled[i]=0;
    if(class[i] == 0) {
      unlabeled[i]=1;
      label[i]=0;
      transduction=1;
    }
    if(class[i] > 0) {
      learn_parm->svm_cost[i]=learn_parm->svm_c*learn_parm->svm_costratio*
	docs[i]->costfactor;
      label[i]=1;
      trainpos++;
    }
    else if(class[i] < 0) {
      learn_parm->svm_cost[i]=learn_parm->svm_c*docs[i]->costfactor;
      label[i]=-1;
      trainneg++;
    }
    else {
      learn_parm->svm_cost[i]=0;
    }
  }
  if(verbosity>=2) {
    printf("%ld positive, %ld negative, and %ld unlabeled examples.\n",trainpos,trainneg,totdoc-trainpos-trainneg); fflush(stdout);
  }

  /* caching makes no sense for linear kernel */
  if(kernel_parm->kernel_type == LINEAR) {
    kernel_cache = NULL;   
  } 

  /* compute starting state for initial alpha values */
  if(alpha) {
    if(verbosity>=1) {
      printf("Computing starting state..."); fflush(stdout);
    }
    index = (long *)my_malloc(sizeof(long)*totdoc);
    index2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));
    weights=(double *)my_malloc(sizeof(double)*(totwords+1));
    aicache = (CFLOAT *)my_malloc(sizeof(CFLOAT)*totdoc);
    for(i=0;i<totdoc;i++) {    /* create full index and clip alphas */
      index[i]=1;
      alpha[i]=fabs(alpha[i]);
      if(alpha[i]<0) alpha[i]=0;
      if(alpha[i]>learn_parm->svm_cost[i]) alpha[i]=learn_parm->svm_cost[i];
    }
    if(kernel_parm->kernel_type != LINEAR) {
      for(i=0;i<totdoc;i++)     /* fill kernel cache with unbounded SV */
	if((alpha[i]>0) && (alpha[i]<learn_parm->svm_cost[i]) 
	   && (kernel_cache_space_available(kernel_cache))) 
	  cache_kernel_row(kernel_cache,docs,i,kernel_parm);
      for(i=0;i<totdoc;i++)     /* fill rest of kernel cache with bounded SV */
	if((alpha[i]==learn_parm->svm_cost[i]) 
	   && (kernel_cache_space_available(kernel_cache))) 
	  cache_kernel_row(kernel_cache,docs,i,kernel_parm);
    }
    (void)compute_index(index,totdoc,index2dnum);
    update_linear_component(docs,label,index2dnum,alpha,a,index2dnum,totdoc,
			    totwords,kernel_parm,kernel_cache,lin,aicache,
			    weights);
    (void)calculate_svm_model(docs,label,unlabeled,lin,alpha,a,c,
			      learn_parm,index2dnum,index2dnum,model);
    for(i=0;i<totdoc;i++) {    /* copy initial alphas */
      a[i]=alpha[i];
    }
    free(index);
    free(index2dnum);
    free(weights);
    free(aicache);
    if(verbosity>=1) {
      printf("done.\n");  fflush(stdout);
    }   
  } 

  if(transduction) {
    learn_parm->svm_iter_to_shrink=99999999;
    if(verbosity >= 1)
      printf("\nDeactivating Shrinking due to an incompatibility with the transductive \nlearner in the current version.\n\n");
  }

  if(transduction && learn_parm->compute_loo) {
    learn_parm->compute_loo=0;
    if(verbosity >= 1)
      printf("\nCannot compute leave-one-out estimates for transductive learner.\n\n");
  }    

  if(learn_parm->remove_inconsistent && learn_parm->compute_loo) {
    learn_parm->compute_loo=0;
    printf("\nCannot compute leave-one-out estimates when removing inconsistent examples.\n\n");
  }    

  if(learn_parm->compute_loo && ((trainpos == 1) || (trainneg == 1))) {
    learn_parm->compute_loo=0;
    printf("\nCannot compute leave-one-out with only one example in one class.\n\n");
  }    


  if(verbosity==1) {
    printf("Optimizing"); fflush(stdout);
  }

  /* train the svm */
  iterations=optimize_to_convergence(docs,label,totdoc,totwords,learn_parm,
				     kernel_parm,kernel_cache,&shrink_state,model,
				     inconsistent,unlabeled,a,lin,
				     c,&timing_profile,
				     &maxdiff,(long)-1,
				     (long)1);
  
  if(verbosity>=1) {
    if(verbosity==1) printf("done. (%ld iterations)\n",iterations);

    misclassified=0;
    for(i=0;(i<totdoc);i++) { /* get final statistic */
      if((lin[i]-model->b)*(double)label[i] <= 0.0) 
	misclassified++;
    }

    printf("Optimization finished (%ld misclassified, maxdiff=%.5f).\n",
	   misclassified,maxdiff); 

    runtime_end=get_runtime();
    if(verbosity>=2) {
      printf("Runtime in cpu-seconds: %.2f (%.2f%% for kernel/%.2f%% for optimizer/%.2f%% for final/%.2f%% for update/%.2f%% for model/%.2f%% for check/%.2f%% for select)\n",
        ((float)runtime_end-(float)runtime_start)/100.0,
        (100.0*timing_profile.time_kernel)/(float)(runtime_end-runtime_start),
	(100.0*timing_profile.time_opti)/(float)(runtime_end-runtime_start),
	(100.0*timing_profile.time_shrink)/(float)(runtime_end-runtime_start),
        (100.0*timing_profile.time_update)/(float)(runtime_end-runtime_start),
        (100.0*timing_profile.time_model)/(float)(runtime_end-runtime_start),
        (100.0*timing_profile.time_check)/(float)(runtime_end-runtime_start),
        (100.0*timing_profile.time_select)/(float)(runtime_end-runtime_start));
    }
    else {
      printf("Runtime in cpu-seconds: %.2f\n",
	     (runtime_end-runtime_start)/100.0);
    }

    if(learn_parm->remove_inconsistent) {	  
      inconsistentnum=0;
      for(i=0;i<totdoc;i++) 
	if(inconsistent[i]) 
	  inconsistentnum++;
      printf("Number of SV: %ld (plus %ld inconsistent examples)\n",
	     model->sv_num-1,inconsistentnum);
    }
    else {
      upsupvecnum=0;
      for(i=1;i<model->sv_num;i++) {
	if(fabs(model->alpha[i]) >= 
	   (learn_parm->svm_cost[(model->supvec[i])->docnum]-
	    learn_parm->epsilon_a)) 
	  upsupvecnum++;
      }
      printf("Number of SV: %ld (including %ld at upper bound)\n",
	     model->sv_num-1,upsupvecnum);
    }
    
    if((verbosity>=1) && (!learn_parm->skip_final_opt_check)) {
      loss=0;
      model_length=0; 
      for(i=0;i<totdoc;i++) {
	if((lin[i]-model->b)*(double)label[i] < 1.0-learn_parm->epsilon_crit)
	  loss+=1.0-(lin[i]-model->b)*(double)label[i];
	model_length+=a[i]*label[i]*lin[i];
      }
      model_length=sqrt(model_length);
      fprintf(stdout,"L1 loss: loss=%.5f\n",loss);
      fprintf(stdout,"Norm of weight vector: |w|=%.5f\n",model_length);
      example_length=estimate_sphere(model,kernel_parm); 
      fprintf(stdout,"Norm of longest example vector: |x|=%.5f\n",
	      length_of_longest_document_vector(docs,totdoc,kernel_parm));
      fprintf(stdout,"Estimated VCdim of classifier: VCdim<=%.5f\n",
	      estimate_margin_vcdim(model,model_length,example_length,
				    kernel_parm));
      if((!learn_parm->remove_inconsistent) && (!transduction)) {
	runtime_start_xa=get_runtime();
	if(verbosity>=1) {
	  printf("Computing XiAlpha-estimates..."); fflush(stdout);
	}
	compute_xa_estimates(model,label,unlabeled,totdoc,docs,lin,a,
			     kernel_parm,learn_parm,&(model->xa_error),
			     &(model->xa_recall),&(model->xa_precision));
	if(verbosity>=1) {
	  printf("done\n");
	}
	printf("Runtime for XiAlpha-estimates in cpu-seconds: %.2f\n",
	       (get_runtime()-runtime_start_xa)/100.0);
	
	fprintf(stdout,"XiAlpha-estimate of the error: error<=%.2f%% (rho=%.2f,depth=%ld)\n",
		model->xa_error,learn_parm->rho,learn_parm->xa_depth);
	fprintf(stdout,"XiAlpha-estimate of the recall: recall=>%.2f%% (rho=%.2f,depth=%ld)\n",
		model->xa_recall,learn_parm->rho,learn_parm->xa_depth);
	fprintf(stdout,"XiAlpha-estimate of the precision: precision=>%.2f%% (rho=%.2f,depth=%ld)\n",
		model->xa_precision,learn_parm->rho,learn_parm->xa_depth);
      }
      else if(!learn_parm->remove_inconsistent) {
	estimate_transduction_quality(model,label,unlabeled,totdoc,docs,lin);
      }
    }
    if(verbosity>=1) {
      printf("Number of kernel evaluations: %ld\n",kernel_cache_statistic);
    }
  }


  /* leave-one-out testing starts now */
  if(learn_parm->compute_loo) {
    /* save results of training on full dataset for leave-one-out */
    runtime_start_loo=get_runtime();
    for(i=0;i<totdoc;i++) {
      xi_fullset[i]=1.0-((lin[i]-model->b)*(double)label[i]);
      if(xi_fullset[i]<0) xi_fullset[i]=0;
      a_fullset[i]=a[i];
    }
    if(verbosity>=1) {
      printf("Computing leave-one-out");
    }
    
    /* repeat this loop for every held-out example */
    for(heldout=0;(heldout<totdoc);heldout++) {
      if(learn_parm->rho*a_fullset[heldout]*r_delta_sq+xi_fullset[heldout]

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
免费在线一区观看| 日韩情涩欧美日韩视频| 日韩一区二区三区观看| 中文字幕一区二区三区乱码在线| 婷婷综合五月天| av高清久久久| 国产欧美日韩精品在线| 麻豆一区二区三| 欧美高清性hdvideosex| 怡红院av一区二区三区| 亚洲日本青草视频在线怡红院| 秋霞影院一区二区| 欧美无乱码久久久免费午夜一区| 国产精品青草综合久久久久99| 毛片av中文字幕一区二区| 欧美精品xxxxbbbb| 午夜精品免费在线观看| 91小视频在线免费看| 国产精品系列在线| 粉嫩久久99精品久久久久久夜| 欧美xxxxxxxx| 麻豆精品在线观看| 欧美电影免费观看高清完整版在线| 亚洲香蕉伊在人在线观| 欧美视频中文字幕| 亚洲一区二区三区视频在线| 欧洲另类一二三四区| 亚洲精品国产一区二区精华液| 成a人片国产精品| 国产精品久久久久久久久果冻传媒| 国产成人久久精品77777最新版本 国产成人鲁色资源国产91色综 | 91精品国产乱码久久蜜臀| 一区二区三区蜜桃网| 91久久久免费一区二区| 亚洲一区二区综合| 欧美日韩国产高清一区二区| 天天综合色天天综合| 日韩欧美国产一区二区三区| 激情久久久久久久久久久久久久久久| 日韩欧美一二三四区| 黑人精品欧美一区二区蜜桃| 国产视频视频一区| 一本色道久久综合亚洲91| 亚洲一区二区视频| 日韩亚洲欧美一区二区三区| 精品夜夜嗨av一区二区三区| 国产日韩欧美电影| 在线视频欧美区| 午夜精品成人在线视频| 精品久久久久久久久久久久久久久久久| 国产曰批免费观看久久久| 国产精品毛片高清在线完整版 | 亚洲视频你懂的| 欧美综合天天夜夜久久| 日韩高清电影一区| 久久久久久一二三区| 91片在线免费观看| 青青草视频一区| 中文字幕一区免费在线观看| 欧美在线看片a免费观看| 精品亚洲成av人在线观看| 中文子幕无线码一区tr| 欧美美女黄视频| 国产一区二区三区四区在线观看| 国产精品久久久久婷婷二区次| 欧美日韩国产综合一区二区| 国产精品99久久久久久似苏梦涵 | 在线观看日韩高清av| 久久99精品久久久久久久久久久久| 国产欧美精品区一区二区三区 | 青椒成人免费视频| 中文字幕中文字幕一区二区| 制服丝袜国产精品| 91丨九色porny丨蝌蚪| 麻豆视频观看网址久久| 一级做a爱片久久| 国产欧美日产一区| 欧美一级日韩免费不卡| 91在线云播放| 国产乱淫av一区二区三区| 亚洲高清在线精品| 亚洲三级在线播放| 久久久另类综合| 日韩一级免费观看| 欧美日韩久久一区二区| 成人av电影在线网| 国产精品羞羞答答xxdd| 秋霞影院一区二区| 亚洲成人av资源| 亚洲激情五月婷婷| 国产精品电影一区二区| 久久九九久精品国产免费直播| 91精品欧美一区二区三区综合在| 99国产精品久| 成人午夜私人影院| 国产精品66部| 卡一卡二国产精品 | 亚洲午夜电影网| 自拍偷拍欧美精品| 国产欧美一区二区三区沐欲| 精品国产一二三区| 日韩一区二区精品在线观看| 欧美视频一区二区三区| 在线亚洲人成电影网站色www| 成人午夜激情片| 成人开心网精品视频| 国产成人午夜高潮毛片| 国产精品18久久久久久vr| 久久99精品久久久久婷婷| 久久超碰97中文字幕| 国模套图日韩精品一区二区| 美女在线观看视频一区二区| 蜜桃av噜噜一区二区三区小说| 日本麻豆一区二区三区视频| 日韩不卡一二三区| 另类中文字幕网| 国产一区二区三区四区五区入口| 国产一区激情在线| 国产精品一卡二卡| 成人精品国产福利| 91小视频在线免费看| 在线观看亚洲成人| 51精品国自产在线| 日韩午夜激情视频| 久久青草国产手机看片福利盒子| 久久精品欧美日韩| 亚洲欧洲另类国产综合| 一区二区三区免费看视频| 首页欧美精品中文字幕| 久久99精品久久久久久久久久久久| 国产真实精品久久二三区| 国产69精品久久久久777| 99热精品国产| 欧美另类z0zxhd电影| 日韩精品中文字幕在线一区| 国产欧美一区二区精品久导航 | 精品播放一区二区| 欧美国产精品一区二区| 亚洲亚洲人成综合网络| 乱一区二区av| www.av精品| 91精品国产综合久久香蕉的特点| 久久亚洲综合色| 亚洲六月丁香色婷婷综合久久| 午夜精品一区二区三区免费视频| 国产资源在线一区| 色婷婷狠狠综合| 日韩精品一区二区三区四区 | 中文字幕一区不卡| 亚洲图片欧美色图| 激情成人午夜视频| 在线观看区一区二| 久久九九99视频| 午夜一区二区三区视频| 成人午夜在线视频| 欧美一级二级三级乱码| 中文字幕在线不卡一区| 免费人成在线不卡| 欧美主播一区二区三区美女| 久久久不卡影院| 日本在线观看不卡视频| 99久久精品一区二区| 精品国产电影一区二区| 一区二区三区在线视频免费 | 久久精品国产亚洲5555| 91一区在线观看| 久久午夜老司机| 秋霞午夜鲁丝一区二区老狼| 91论坛在线播放| 国产精品视频麻豆| 激情文学综合网| 日韩三级在线观看| 一二三四社区欧美黄| 99精品视频在线播放观看| 2021久久国产精品不只是精品| 亚洲二区在线观看| 色又黄又爽网站www久久| 国产精品久久久久久久浪潮网站| 麻豆国产精品777777在线| 欧美日韩成人一区| 亚洲成人av在线电影| 欧洲精品在线观看| 亚洲乱码国产乱码精品精的特点 | 国产在线不卡一区| 日韩一区二区精品葵司在线 | 精品国产乱码久久久久久老虎| 亚洲一区二区美女| 在线观看一区日韩| 玉米视频成人免费看| 色欲综合视频天天天| 亚洲欧美福利一区二区| 成人亚洲一区二区一| 亚洲午夜一二三区视频| 色综合天天综合网天天看片| 中文字幕日韩一区| 99精品黄色片免费大全| 亚洲人123区| 欧美伊人久久久久久久久影院 | 视频一区欧美日韩| 欧美日韩成人高清|