亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? svm_learn_main.c

?? Support Vector Machine Struct
?? C
?? 第 1 頁 / 共 2 頁
字號:
    learn_parm->type=CLASSIFICATION;
  }
  else if(strcmp(type,"r")==0) {
    learn_parm->type=REGRESSION;
  }
  else if(strcmp(type,"p")==0) {
    learn_parm->type=RANKING;
  }
  else if(strcmp(type,"o")==0) {
    learn_parm->type=OPTIMIZATION;
  }
  else if(strcmp(type,"s")==0) {
    learn_parm->type=OPTIMIZATION;
    learn_parm->sharedslack=1;
  }
  else {
    printf("\nUnknown type '%s': Valid types are 'c' (classification), 'r' regession, and 'p' preference ranking.\n",type);
    wait_any_key();
    print_help();
    exit(0);
  }    
  if((learn_parm->skip_final_opt_check) 
     && (kernel_parm->kernel_type == LINEAR)) {
    printf("\nIt does not make sense to skip the final optimality check for linear kernels.\n\n");
    learn_parm->skip_final_opt_check=0;
  }    
  if((learn_parm->skip_final_opt_check) 
     && (learn_parm->remove_inconsistent)) {
    printf("\nIt is necessary to do the final optimality check when removing inconsistent \nexamples.\n");
    wait_any_key();
    print_help();
    exit(0);
  }    
  if((learn_parm->svm_maxqpsize<2)) {
    printf("\nMaximum size of QP-subproblems not in valid range: %ld [2..]\n",learn_parm->svm_maxqpsize); 
    wait_any_key();
    print_help();
    exit(0);
  }
  if((learn_parm->svm_maxqpsize<learn_parm->svm_newvarsinqp)) {
    printf("\nMaximum size of QP-subproblems [%ld] must be larger than the number of\n",learn_parm->svm_maxqpsize); 
    printf("new variables [%ld] entering the working set in each iteration.\n",learn_parm->svm_newvarsinqp); 
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->svm_iter_to_shrink<1) {
    printf("\nMaximum number of iterations for shrinking not in valid range: %ld [1,..]\n",learn_parm->svm_iter_to_shrink);
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->svm_c<0) {
    printf("\nThe C parameter must be greater than zero!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->transduction_posratio>1) {
    printf("\nThe fraction of unlabeled examples to classify as positives must\n");
    printf("be less than 1.0 !!!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->svm_costratio<=0) {
    printf("\nThe COSTRATIO parameter must be greater than zero!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->epsilon_crit<=0) {
    printf("\nThe epsilon parameter must be greater than zero!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->rho<0) {
    printf("\nThe parameter rho for xi/alpha-estimates and leave-one-out pruning must\n");
    printf("be greater than zero (typically 1.0 or 2.0, see T. Joachims, Estimating the\n");
    printf("Generalization Performance of an SVM Efficiently, ICML, 2000.)!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if((learn_parm->xa_depth<0) || (learn_parm->xa_depth>100)) {
    printf("\nThe parameter depth for ext. xi/alpha-estimates must be in [0..100] (zero\n");
    printf("for switching to the conventional xa/estimates described in T. Joachims,\n");
    printf("Estimating the Generalization Performance of an SVM Efficiently, ICML, 2000.)\n");
    wait_any_key();
    print_help();
    exit(0);
  }
}

void wait_any_key()
{
  printf("\n(more)\n");
  (void)getc(stdin);
}

void print_help()
{
  printf("\nSVM-light %s: Support Vector Machine, learning module     %s\n",VERSION,VERSION_DATE);
  copyright_notice();
  printf("   usage: svm_learn [options] example_file model_file\n\n");
  printf("Arguments:\n");
  printf("         example_file-> file with training data\n");
  printf("         model_file  -> file to store learned decision rule in\n");

  printf("General options:\n");
  printf("         -?          -> this help\n");
  printf("         -v [0..3]   -> verbosity level (default 1)\n");
  printf("Learning options:\n");
  printf("         -z {c,r,p}  -> select between classification (c), regression (r),\n");
  printf("                        and preference ranking (p) (default classification)\n");
  printf("         -c float    -> C: trade-off between training error\n");
  printf("                        and margin (default [avg. x*x]^-1)\n");
  printf("         -w [0..]    -> epsilon width of tube for regression\n");
  printf("                        (default 0.1)\n");
  printf("         -j float    -> Cost: cost-factor, by which training errors on\n");
  printf("                        positive examples outweight errors on negative\n");
  printf("                        examples (default 1) (see [4])\n");
  printf("         -b [0,1]    -> use biased hyperplane (i.e. x*w+b>0) instead\n");
  printf("                        of unbiased hyperplane (i.e. x*w>0) (default 1)\n");
  printf("         -i [0,1]    -> remove inconsistent training examples\n");
  printf("                        and retrain (default 0)\n");
  printf("Performance estimation options:\n");
  printf("         -x [0,1]    -> compute leave-one-out estimates (default 0)\n");
  printf("                        (see [5])\n");
  printf("         -o ]0..2]   -> value of rho for XiAlpha-estimator and for pruning\n");
  printf("                        leave-one-out computation (default 1.0) (see [2])\n");
  printf("         -k [0..100] -> search depth for extended XiAlpha-estimator \n");
  printf("                        (default 0)\n");
  printf("Transduction options (see [3]):\n");
  printf("         -p [0..1]   -> fraction of unlabeled examples to be classified\n");
  printf("                        into the positive class (default is the ratio of\n");
  printf("                        positive and negative examples in the training data)\n");
  printf("Kernel options:\n");
  printf("         -t int      -> type of kernel function:\n");
  printf("                        0: linear (default)\n");
  printf("                        1: polynomial (s a*b+c)^d\n");
  printf("                        2: radial basis function exp(-gamma ||a-b||^2)\n");
  printf("                        3: sigmoid tanh(s a*b + c)\n");
  printf("                        4: user defined kernel from kernel.h\n");
  printf("         -d int      -> parameter d in polynomial kernel\n");
  printf("         -g float    -> parameter gamma in rbf kernel\n");
  printf("         -s float    -> parameter s in sigmoid/poly kernel\n");
  printf("         -r float    -> parameter c in sigmoid/poly kernel\n");
  printf("         -u string   -> parameter of user defined kernel\n");
  printf("Optimization options (see [1]):\n");
  printf("         -q [2..]    -> maximum size of QP-subproblems (default 10)\n");
  printf("         -n [2..q]   -> number of new variables entering the working set\n");
  printf("                        in each iteration (default n = q). Set n<q to prevent\n");
  printf("                        zig-zagging.\n");
  printf("         -m [5..]    -> size of cache for kernel evaluations in MB (default 40)\n");
  printf("                        The larger the faster...\n");
  printf("         -e float    -> eps: Allow that error for termination criterion\n");
  printf("                        [y [w*x+b] - 1] >= eps (default 0.001)\n");
  printf("         -y [0,1]    -> restart the optimization from alpha values in file\n");
  printf("                        specified by -a option. (default 0)\n");
  printf("         -h [5..]    -> number of iterations a variable needs to be\n"); 
  printf("                        optimal before considered for shrinking (default 100)\n");
  printf("         -f [0,1]    -> do final optimality check for variables removed\n");
  printf("                        by shrinking. Although this test is usually \n");
  printf("                        positive, there is no guarantee that the optimum\n");
  printf("                        was found if the test is omitted. (default 1)\n");
  printf("         -y string   -> if option is given, reads alphas from file with given\n");
  printf("                        and uses them as starting point. (default 'disabled')\n");
  printf("         -# int      -> terminate optimization, if no progress after this\n");
  printf("                        number of iterations. (default 100000)\n");
  printf("Output options:\n");
  printf("         -l string   -> file to write predicted labels of unlabeled\n");
  printf("                        examples into after transductive learning\n");
  printf("         -a string   -> write all alphas to this file after learning\n");
  printf("                        (in the same order as in the training set)\n");
  wait_any_key();
  printf("\nMore details in:\n");
  printf("[1] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in\n");
  printf("    Kernel Methods - Support Vector Learning, B. Sch鰈kopf and C. Burges and\n");
  printf("    A. Smola (ed.), MIT Press, 1999.\n");
  printf("[2] T. Joachims, Estimating the Generalization performance of an SVM\n");
  printf("    Efficiently. International Conference on Machine Learning (ICML), 2000.\n");
  printf("[3] T. Joachims, Transductive Inference for Text Classification using Support\n");
  printf("    Vector Machines. International Conference on Machine Learning (ICML),\n");
  printf("    1999.\n");
  printf("[4] K. Morik, P. Brockhausen, and T. Joachims, Combining statistical learning\n");
  printf("    with a knowledge-based approach - A case study in intensive care  \n");
  printf("    monitoring. International Conference on Machine Learning (ICML), 1999.\n");
  printf("[5] T. Joachims, Learning to Classify Text Using Support Vector\n");
  printf("    Machines: Methods, Theory, and Algorithms. Dissertation, Kluwer,\n");
  printf("    2002.\n\n");
}


?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲国产精品久久人人爱蜜臀| 99久精品国产| 国产精品视频一区二区三区不卡| 99国产精品久| 国产在线播放一区二区三区| 男人的天堂久久精品| √…a在线天堂一区| 日韩美一区二区三区| 日韩精品在线看片z| 色哟哟精品一区| 美女网站一区二区| 日本va欧美va欧美va精品| 亚洲欧美日韩人成在线播放| 久久久久久久免费视频了| 日韩一级片在线观看| 欧美午夜不卡在线观看免费| 色婷婷国产精品| 不卡电影一区二区三区| 91成人看片片| 欧美日韩aaaaaa| 欧美日韩国产不卡| 欧美日韩一区在线| 日韩一区二区精品在线观看| 欧美日韩一区二区在线观看视频| 国产精品亚洲综合一区在线观看| 成人午夜激情影院| 高清久久久久久| 色欲综合视频天天天| 在线欧美日韩精品| 欧美在线观看一区二区| 在线综合亚洲欧美在线视频| 欧美日韩在线综合| 国产一区二区免费看| 国产一区二区三区黄视频| 玉足女爽爽91| 五月综合激情网| 国产suv精品一区二区6| 成人免费毛片高清视频| 91片黄在线观看| 欧美v亚洲v综合ⅴ国产v| 国产偷国产偷精品高清尤物 | 麻豆成人av在线| 国产精品一区二区男女羞羞无遮挡| 国产精品白丝jk黑袜喷水| 粉嫩久久99精品久久久久久夜| 91福利社在线观看| 日韩亚洲欧美中文三级| 成人性生交大片免费看视频在线| 欧美日本视频在线| 国产午夜精品久久| 日本欧美久久久久免费播放网| 极品少妇xxxx精品少妇偷拍| 国产 日韩 欧美大片| 欧美成人aa大片| 国产精品久久福利| 一区二区在线免费观看| 日韩专区中文字幕一区二区| 91丝袜高跟美女视频| 8x8x8国产精品| 欧美不卡一区二区| 一区二区高清视频在线观看| 奇米888四色在线精品| 99精品欧美一区二区蜜桃免费 | 日本成人在线电影网| 狠狠色丁香九九婷婷综合五月| 成人免费视频一区| 久久久青草青青国产亚洲免观| 亚洲精品水蜜桃| 91麻豆精品秘密| 久久色中文字幕| 天天射综合影视| 欧美艳星brazzers| 国产精品久久久久久久久免费桃花 | 欧美怡红院视频| 精品999久久久| 黑人巨大精品欧美黑白配亚洲 | 亚洲一卡二卡三卡四卡无卡久久| 成人精品电影在线观看| 欧美大黄免费观看| 久久综合久久久久88| 久久69国产一区二区蜜臀| 色8久久人人97超碰香蕉987| 亚洲色图一区二区| 成人黄色软件下载| 久久精品网站免费观看| 成人午夜精品在线| 久久久久久久久久久久电影| 国产精一品亚洲二区在线视频| 日韩一区国产二区欧美三区| 亚洲国产精品自拍| 精品少妇一区二区三区视频免付费 | 在线观看亚洲精品| 亚洲一区二区三区四区中文字幕| 9i看片成人免费高清| 中日韩av电影| 在线视频你懂得一区| 一区二区三区在线不卡| 国产精品一区二区你懂的| 国产精品亲子伦对白| 成人av网站在线观看免费| 亚洲精品中文在线| 色综合天天综合色综合av| 中文字幕在线不卡一区| 欧美三级韩国三级日本三斤| 亚洲激情自拍偷拍| 成人免费视频网站在线观看| 国产精品久久毛片a| 韩国v欧美v亚洲v日本v| 久久久久国产成人精品亚洲午夜 | 国产偷国产偷亚洲高清人白洁| 丰满亚洲少妇av| 亚洲男人的天堂av| 欧美性生活一区| 国产精品一品二品| 亚洲天堂a在线| 欧美大片一区二区| 国产不卡一区视频| 亚洲国产美国国产综合一区二区| 欧美日韩午夜影院| 激情图区综合网| 亚洲第一福利视频在线| 日韩视频免费观看高清在线视频| 91一区二区三区在线观看| 亚洲一区二区三区三| 久久先锋影音av| 在线影视一区二区三区| 免费在线欧美视频| 国产欧美精品一区二区色综合| 成人av在线资源网站| 强制捆绑调教一区二区| 日本一区二区三区电影| 8x福利精品第一导航| 成人av影视在线观看| 日韩极品在线观看| 一级日本不卡的影视| 日韩一区二区中文字幕| 欧美日韩卡一卡二| 色综合视频一区二区三区高清| 国内久久精品视频| 亚洲色图视频网| 久久精品免视看| 51精品久久久久久久蜜臀| 亚洲精品免费看| 日本一区二区三区dvd视频在线| 欧美午夜精品电影| 欧美视频在线观看一区二区| 久久国产精品99精品国产| 国产精品伦一区| 精品久久久久99| 欧美日本高清视频在线观看| 欧美午夜一区二区三区 | 亚洲女同女同女同女同女同69| 欧美日韩一区精品| 蜜桃视频第一区免费观看| 伊人夜夜躁av伊人久久| 中文字幕一区二区三区视频| 自拍偷拍欧美激情| 久久精品免视看| 国产精品午夜免费| 精品国产91久久久久久久妲己| 日韩一级在线观看| 久久品道一品道久久精品| 久久欧美中文字幕| 亚洲精品一区二区精华| 久久精品欧美日韩精品| www激情久久| 国产午夜精品福利| 欧美精品一区二区久久久| 久久久久久电影| www日韩大片| 久久一夜天堂av一区二区三区| 欧美韩国日本综合| 久久蜜桃香蕉精品一区二区三区| 欧美韩国日本不卡| 久久综合九色综合欧美亚洲| 久久久精品影视| 国产精品毛片久久久久久久| 日韩欧美二区三区| 国产精品白丝在线| 中文字幕综合网| 日韩成人一级片| 六月丁香婷婷色狠狠久久| 国产福利精品导航| 国产成人自拍网| 欧美在线一二三四区| 欧美日韩精品一区二区三区| 国模套图日韩精品一区二区| 成人精品视频一区二区三区尤物| 在线观看亚洲a| 精品日韩一区二区三区| 久久这里只精品最新地址| 日韩精品一区二区三区视频| 国产精品久久久久久久久搜平片 | 中文字幕一区二区三区视频| 丝袜美腿成人在线| 国内外成人在线| 欧美色中文字幕| 日韩无一区二区| 亚洲影院久久精品| 美女视频一区二区|