?? jakes_hw3.m
字號:
%gives the complex fade coefficients
%output power is approximately unity
%inputs:max_doppler_freq (Hz); sample_freq (Hz); num_samples, start_time
%(sec)
%outputs:alpha_complex (fades), end_time (sec)
function [alpha_complex, end_time] = jakes(max_doppler_freq, sample_freq, ...
num_samples, start_time)
num_generators = 32;
T = 1/sample_freq; %sample time
N = 2*(2*num_generators+1.0);
wm = max_doppler_freq*2*pi;
for k = 1:num_samples
% t = k*T+10000; %start at some non-zero point ;
t = (k-1)*T+start_time;
I = 0;
Q = 0;
for nn = 1:num_generators
%calculate input signal
wn = wm*cos(mod((2*pi*nn)/N,2*pi));
input_signal = cos(mod((wn*t),2*pi));
%calculate Q channel and sum
beta_n= (pi*nn)/(num_generators+1);
Q = Q + 2*sin(beta_n)*input_signal;
%calculate I channel and sum
I = I + 2*cos(beta_n)*input_signal;
end
%added input
added_input_signal = (1/sqrt(2))*cos(mod((wm*t),2*pi));
%Q Channel added input signal
alpha = pi/4;
added_Q_output = (2*sin(alpha))*added_input_signal;
Q = Q + added_Q_output;
%I Channel added input signal
alpha = pi/4;
added_I_output = (2*cos(alpha))*added_input_signal;
I = I + added_I_output;
alpha_complex(k) = (I + j*Q);
%since E{alpha_re^{2}}=No+1 and E{alpha_im^{2}}=No
%if you normalize it with respect to sqrt(2No+1) as below
%E{alpha_re^2}+E{alpha_im^2}=1
alpha_complex(k) = (I + j*Q)/sqrt(2*num_generators+1);
end_time = t;
end
%check the mean power level of output
%real part power
% alpha_re=(real(alpha_complex));
% alpha_im=(imag(alpha_complex));
%
% mean(alpha_re.^2);
% mean(alpha_im.^2);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -