亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? ransac.m

?? MATLAB Functions for Multiple View Geometry
?? M
字號(hào):
% RANSAC - Robustly fits a model to data with the RANSAC algorithm%% Usage:%% [M, inliers] = ransac(x, fittingfn, distfn, degenfn s, t, feedback, ...%                       maxDataTrials, maxTrials)%% Arguments:%     x         - Data sets to which we are seeking to fit a model M%                 It is assumed that x is of size [d x Npts]%                 where d is the dimensionality of the data and Npts is%                 the number of data points.%%     fittingfn - Handle to a function that fits a model to s%                 data from x.  It is assumed that the function is of the%                 form: %                    M = fittingfn(x)%                 Note it is possible that the fitting function can return%                 multiple models (for example up to 3 fundamental matrices%                 can be fitted to 7 matched points).  In this case it is%                 assumed that the fitting function returns a cell array of%                 models.%                 If this function cannot fit a model it should return M as%                 an empty matrix.%%     distfn    - Handle to a function that evaluates the%                 distances from the model to data x.%                 It is assumed that the function is of the form:%                    [inliers, M] = distfn(M, x, t)%                 This function must evaluate the distances between points%                 and the model returning the indices of elements in x that%                 are inliers, that is, the points that are within distance%                 't' of the model.  Additionally, if M is a cell array of%                 possible models 'distfn' will return the model that has the%                 most inliers.  If there is only one model this function%                 must still copy the model to the output.  After this call M%                 will be a non-cell object representing only one model. %%     degenfn   - Handle to a function that determines whether a%                 set of datapoints will produce a degenerate model.%                 This is used to discard random samples that do not%                 result in useful models.%                 It is assumed that degenfn is a boolean function of%                 the form: %                    r = degenfn(x)%                 It may be that you cannot devise a test for degeneracy in%                 which case you should write a dummy function that always%                 returns a value of 1 (true) and rely on 'fittingfn' to return%                 an empty model should the data set be degenerate.%%     s         - The minimum number of samples from x required by%                 fittingfn to fit a model.%%     t         - The distance threshold between a data point and the model%                 used to decide whether the point is an inlier or not.%%     feedback  - An optional flag 0/1. If set to one the trial count and the%                 estimated total number of trials required is printed out at%                 each step.  Defaults to 0.%%     maxDataTrials - Maximum number of attempts to select a non-degenerate%                     data set. This parameter is optional and defaults to 100.%%     maxTrials - Maximum number of iterations. This parameter is optional and%                 defaults to 1000.%% Returns:%     M         - The model having the greatest number of inliers.%     inliers   - An array of indices of the elements of x that were%                 the inliers for the best model.%% For an example of the use of this function see RANSACFITHOMOGRAPHY or% RANSACFITPLANE % References:%    M.A. Fishler and  R.C. Boles. "Random sample concensus: A paradigm%    for model fitting with applications to image analysis and automated%    cartography". Comm. Assoc. Comp, Mach., Vol 24, No 6, pp 381-395, 1981%%    Richard Hartley and Andrew Zisserman. "Multiple View Geometry in%    Computer Vision". pp 101-113. Cambridge University Press, 2001% Copyright (c) 2003-2006 Peter Kovesi% School of Computer Science & Software Engineering% The University of Western Australia% pk at csse uwa edu au    % http://www.csse.uwa.edu.au/~pk% % Permission is hereby granted, free of charge, to any person obtaining a copy% of this software and associated documentation files (the "Software"), to deal% in the Software without restriction, subject to the following conditions:% % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software.%% The Software is provided "as is", without warranty of any kind.%% May      2003 - Original version% February 2004 - Tidied up.% August   2005 - Specification of distfn changed to allow model fitter to%                 return multiple models from which the best must be selected% Sept     2006 - Random selection of data points changed to ensure duplicate%                 points are not selected.% February 2007 - Jordi Ferrer: Arranged warning printout.%                               Allow maximum trials as optional parameters.%                               Patch the problem when non-generated data%                               set is not given in the first iteration.% August   2008 - 'feedback' parameter restored to argument list and other%                 breaks in code introduced in last update fixed.% function [M, inliers] = ransac(x, fittingfn, distfn, degenfn, s, t, feedback, ...                               maxDataTrials, MaxTrials)    % Test number of parameters    error ( nargchk ( 6, 9, nargin ) );    error ( nargoutchk ( 2, 2, nargout ) );        if nargin < 9; maxTrials = 1000;    end;     if nargin < 8; maxDataTrials = 100; end;     if nargin < 7; feedback = 0;        end;        [rows, npts] = size(x);                         p = 0.99;         % Desired probability of choosing at least one sample                      % free from outliers    bestM = NaN;      % Sentinel value allowing detection of solution failure.    trialcount = 0;    bestscore =  0;        N = 1;            % Dummy initialisation for number of trials.        while N > trialcount                % Select at random s datapoints to form a trial model, M.        % In selecting these points we have to check that they are not in        % a degenerate configuration.        degenerate = 1;        count = 1;        while degenerate            % Generate s random indicies in the range 1..npts            % (If you do not have the statistics toolbox, or are using Octave,            % use the function RANDOMSAMPLE from my webpage)            ind = randsample(npts, s);            % Test that these points are not a degenerate configuration.            degenerate = feval(degenfn, x(:,ind));                        if ~degenerate                 % Fit model to this random selection of data points.                % Note that M may represent a set of models that fit the data in                % this case M will be a cell array of models                M = feval(fittingfn, x(:,ind));                                % Depending on your problem it might be that the only way you                % can determine whether a data set is degenerate or not is to                % try to fit a model and see if it succeeds.  If it fails we                % reset degenerate to true.                if isempty(M)                    degenerate = 1;                end            end                        % Safeguard against being stuck in this loop forever            count = count + 1;            if count > maxDataTrials                warning('Unable to select a nondegenerate data set');                break            end        end                % Once we are out here we should have some kind of model...                % Evaluate distances between points and model returning the indices        % of elements in x that are inliers.  Additionally, if M is a cell        % array of possible models 'distfn' will return the model that has        % the most inliers.  After this call M will be a non-cell object        % representing only one model.        [inliers, M] = feval(distfn, M, x, t);%         [inliers, M] = feval(distfn, M, x);        % Find the number of inliers to this model.        ninliers = length(inliers);                if ninliers > bestscore    % Largest set of inliers so far...            bestscore = ninliers;  % Record data for this model            bestinliers = inliers;            bestM = M;                        % Update estimate of N, the number of trials to ensure we pick,             % with probability p, a data set with no outliers.            fracinliers =  ninliers/npts;            pNoOutliers = 1 -  fracinliers^s;            pNoOutliers = max(eps, pNoOutliers);  % Avoid division by -Inf            pNoOutliers = min(1-eps, pNoOutliers);% Avoid division by 0.            N = log(1-p)/log(pNoOutliers);        end                trialcount = trialcount+1;        if feedback            fprintf('trial %d out of %d         \r',trialcount, ceil(N));        end        % Safeguard against being stuck in this loop forever        if trialcount > maxTrials            warning( ...            sprintf('ransac reached the maximum number of %d trials',...                    maxTrials));            break        end         end    fprintf('\n');        if ~isnan(bestM)   % We got a solution         M = bestM;        inliers = bestinliers;    else                   M = [];        inliers = [];        error('ransac was unable to find a useful solution');    end    

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99热精品一区二区| 蜜臀av性久久久久蜜臀aⅴ流畅 | 久久精品久久精品| 国产久卡久卡久卡久卡视频精品| 国产伦精品一区二区三区在线观看| 成人免费视频免费观看| 欧美优质美女网站| www一区二区| 亚洲男同性视频| 久久se精品一区精品二区| 99re热视频精品| 日韩欧美123| 亚洲视频一区在线观看| 秋霞国产午夜精品免费视频| 丁香亚洲综合激情啪啪综合| 欧美日韩aaaaaa| 国产欧美日韩亚州综合| 午夜精品免费在线观看| 岛国一区二区三区| 日韩一卡二卡三卡国产欧美| 18成人在线观看| 久久成人av少妇免费| 在线一区二区三区四区| 国产日产精品一区| 日本欧美一区二区| 91精品福利在线| 国产拍揄自揄精品视频麻豆| 午夜在线成人av| 99在线精品视频| 2020日本不卡一区二区视频| 亚洲国产毛片aaaaa无费看| 国产黄色精品视频| 日韩午夜激情电影| 亚洲成人黄色影院| 成人免费观看视频| 精品国产在天天线2019| 亚洲一区二区三区免费视频| 成人av网站在线观看免费| 日韩一区二区三区高清免费看看| 一区二区三区中文字幕精品精品| 国产不卡在线一区| 26uuu精品一区二区| 日韩在线播放一区二区| 91久久免费观看| 中文字幕在线观看一区二区| 国产精品一区久久久久| 欧美刺激午夜性久久久久久久| 亚洲444eee在线观看| 91久久香蕉国产日韩欧美9色| 国产精品嫩草影院av蜜臀| 狠狠色综合色综合网络| 欧美电影免费观看完整版| 偷拍日韩校园综合在线| 欧美视频三区在线播放| 亚洲视频狠狠干| 懂色av一区二区夜夜嗨| 国产午夜精品久久久久久免费视| 久久66热re国产| 日韩欧美你懂的| 日本亚洲免费观看| 欧美日韩中文另类| 一区二区三区在线看| 色婷婷精品久久二区二区蜜臂av | 色婷婷香蕉在线一区二区| 中文字幕在线免费不卡| 成人午夜精品在线| 国产精品天天看| 成人福利视频在线看| 中文天堂在线一区| caoporen国产精品视频| 国产精品大尺度| 91天堂素人约啪| 一区二区三区欧美亚洲| 欧洲精品在线观看| 亚洲成人av一区二区| 欧美日韩国产一区二区三区地区| 亚洲成人av电影| 欧美一级高清大全免费观看| 久久91精品国产91久久小草| 精品国产乱码久久久久久久 | 国产日韩欧美综合一区| 粉嫩av一区二区三区在线播放| 亚洲国产成人午夜在线一区| 成人综合在线网站| 亚洲三级在线免费| 欧美亚洲综合网| 天天影视色香欲综合网老头| 日韩久久精品一区| 欧美一区二区私人影院日本| 天堂va蜜桃一区二区三区| 欧美一级xxx| 国产经典欧美精品| 亚洲视频资源在线| 欧美日韩一区二区三区免费看| 亚洲一区二区三区爽爽爽爽爽| 91精品国产aⅴ一区二区| 久久99九九99精品| 中文字幕成人在线观看| 欧洲另类一二三四区| 老司机午夜精品99久久| 国产欧美一区二区三区在线看蜜臀| 91在线视频18| 日韩高清在线观看| 国产视频一区二区在线观看| 色先锋aa成人| 久久精品国产精品亚洲红杏 | 在线观看一区二区视频| 日韩不卡手机在线v区| 欧美激情艳妇裸体舞| 在线亚洲人成电影网站色www| 日本女人一区二区三区| 亚洲国产精品v| 欧美日韩国产片| 国产美女主播视频一区| 亚洲美女视频在线观看| 日韩一区二区免费在线电影| 高清shemale亚洲人妖| 午夜视频一区二区| 国产亚洲欧美在线| 在线观看一区日韩| 国产精品夜夜爽| 亚洲444eee在线观看| 中文字幕不卡在线观看| 538prom精品视频线放| aaa欧美大片| 久久er精品视频| 亚洲一区二区三区四区五区中文 | 国产精品中文欧美| 亚洲国产婷婷综合在线精品| 久久久久久一级片| 欧美色爱综合网| 成人18精品视频| 精品一区二区日韩| 亚洲成a天堂v人片| 国产精品福利影院| 欧美一卡二卡三卡| 99re热这里只有精品免费视频| 韩国女主播一区| 婷婷开心激情综合| 亚洲三级久久久| 国产色婷婷亚洲99精品小说| 51久久夜色精品国产麻豆| 色综合久久88色综合天天| 91精品婷婷国产综合久久| 91在线观看成人| 国产999精品久久久久久| 日韩经典中文字幕一区| 亚洲女人的天堂| 国产精品视频麻豆| 久久精品一区蜜桃臀影院| 91精品麻豆日日躁夜夜躁| 日本韩国欧美一区二区三区| 成人黄色777网| 国产剧情一区二区三区| 男男视频亚洲欧美| 香蕉乱码成人久久天堂爱免费| 中文字幕一区二区三区不卡在线| 精品国产伦一区二区三区观看体验| 欧美日本一区二区三区| 在线视频你懂得一区二区三区| 成人精品视频一区| 国产一区二区在线观看免费| 美日韩一级片在线观看| 日本一不卡视频| 日韩电影网1区2区| 亚洲成人动漫在线免费观看| 一卡二卡欧美日韩| 亚洲精品美腿丝袜| 亚洲丝袜美腿综合| 最新国产の精品合集bt伙计| 国产日韩精品久久久| 国产欧美一区二区三区在线看蜜臀 | 国产女同互慰高潮91漫画| 精品第一国产综合精品aⅴ| 欧美夫妻性生活| 777午夜精品视频在线播放| 日本道色综合久久| 欧美午夜理伦三级在线观看| 91国偷自产一区二区使用方法| 色呦呦网站一区| 色婷婷av一区二区三区软件| 在线这里只有精品| 欧美性猛片xxxx免费看久爱| 欧美亚洲精品一区| 欧美日韩国产美| 91麻豆精品国产91久久久久久| 在线播放亚洲一区| 日韩欧美综合在线| 精品国产乱码久久久久久1区2区| 精品处破学生在线二十三| www久久精品| 亚洲国产精品av| 亚洲精品高清在线观看| 亚洲国产一区二区视频| 午夜电影久久久| 另类小说图片综合网| 国产成a人无v码亚洲福利| aaa亚洲精品一二三区| 欧美性感一区二区三区| 欧美一区二区三区系列电影|