亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.txt

?? 本代碼是Tsai兩步法標定程序
?? TXT
字號:
###########################################################
Tsai Camera Calibration FAQ - Reg Willson
Date: Oct 27, 1995

If you have any questions, comments, or suggestions about this document,
the software, or camera calibration in general, please read item 5.

---------------------------
 Table of contents
---------------------------
1 - What is Tsai's camera model?
2 - Where can I find the required intrinsic camera constants?
    2.1 - Why is the calibrated focal length not the same as the
          number printed on the lens?
3 - How do I collect calibration data?
    3.1 - Coplanar and non-coplanar data
    3.2 - Distribution of data points
    3.3 - Placement of world coordinate origin
    3.4 - Perspective projection effects (or lack thereof)
    3.5 - Subpixel measurement of image features
4 - What are some of the nonlinear optimization issues?
5 - Where can I find more information on Tsai's algorithm?
6 - Comments and thanks

---------------------------
  Contents
---------------------------

1 - What is Tsai's camera model?

Tsai's camera model is based on the pin-hole model of 3D-2D perspective
projection with 1st order radial lens distortion. The model has 11
parameters: five internal (also called intrinsic or interior) parameters:

        f      - effective focal length of the pin-hole camera,
        kappa1 - 1st order radial lens distortion coefficient,
        Cx, Cy - coordinates of center of radial lens distortion -and-
                 the piercing point of the camera coordinate frame's
                 Z axis with the camera's sensor plane,
        sx     - scale factor to account for any uncertainty in the
                 framegrabber's resampling of the horizontal scanline.

and six external (also called extrinsic or exterior) parameters:

        Rx, Ry, Rz - rotation angles for the transform between the
                     world and camera coordinate frames,
        Tx, Ty, Tz - translational components for the transform between the
                     world and camera coordinate frames.

In addition to the 11 variable camera parameters Tsai's model has six fixed
intrinsic camera constants:

        Ncx - number of sensor elements in camera's x direction (in sels),
        Nfx - number of pixels in frame grabber's x direction (in pixels),
        dx  - X dimension of camera's sensor element (in mm/sel),
        dy  - Y dimension of camera's sensor element (in mm/sel),
        dpx - effective X dimension of pixel in frame grabber (in mm/pixel), and
        dpy - effective Y dimension of pixel in frame grabber (in mm/pixel).


2 - Where can I find the required intrinsic camera constants?

Commercial and industrial cameras often list Ncx, dx, and dy in their
user guides.  With consumer cameras you will generally need to contact
the manufacturer.

You don't need to know the actual values of the intrinsic constants to
calibrate an "accurate" camera model. For most applications "accurate"
simply means that given the 3D world coordinates of a point P the camera
model will accurately predict the 2D position of the point's image P' in
the frame buffer.  In these cases the true intrinsic constants aren't
necessary.  To get the camera calibration to converge to a solution you
only need the aspect ratio of the camera/frame grabber set up, i.e. the
ratio between dpx and dpy. You can get a good estimate for this from a
straight-on image of a rectangular target.  Measuring the rectangle, the
ratio

  (pixels from side-to-side in image) / (mm from side-to-side on target)
  ------------------------------------------------------------------------
  (pixels from top-to-bottom in image) / (mm from top-to-bottom on target)

should be an accurate enough estimate of dpx / dpy to allow the
calibration to converge.  The calibration algorithms (with the exception
of the basic Tsai coplanar calibration) will adjust the sx parameter to
automatically compensate for any error in the ratio of dpx / dpy.

Given the ratio of dpx to dpy, simply pick some value for dpy, say 10um (or
if you know it you can use the actual vertical pixel pitch) and use that to
back calculate dpx, dx, and dy. Set Ncx = Nfx, sx = 1.0, and Cx and Cy to
be the center of the frame buffer.  When you calibrate the model the
algorithm will adjust sx, Cx, and Cy to give a best fit set of intrinsic
parameters.

Observe if you double dpx and dpy, all the extrinsic parameters, Cx, Cy,
and sx, and the calibration error should remain the same.  The calibrated
camera model will be just as accurate.  The only thing that will change is
f and k1.


2.1 - Why is the calibrated focal length not the same as the number
      printed on the lens?

Even if you use the exact intrinsic camera parameters specified by the
manufacturer, the calibrated value of the effective focal length f is
unlikely to be the same as the focal length specified on the lens.  In
these calibration algorithms the effective focal length is a parameter
in a pin-hole camera model.  The focal length printed on the lens is a
parameter in a thick-lens camera model.  While the two parameters have
similar effects on the image they are actually quite different
quantities.


3 - How do I collect calibration data?

Calibration for the model consists of the 3D (x,y,z) world coordinates of a
feature point (in mm) and the corresponding coordinates (Xf,Yf) (in pixels)
of the feature point in the image.  The 3D coordinates must be specified in
a right-handed coordinate system.

Once a camera has been calibrated, subsequent calibrations at different
poses (i.e. with the camera rotated and/or translated) can be speeded up by
using the intrinsic parameters from the first calibration as a starting
point.


3.1 - Coplanar and non-coplanar data

Tsai's algorithm has two variants: one for coplanar data and one for
non-coplanar data.  For coplanar data Tsai's algorithm requires the z
component of the 3D coordinates to be 0.

Basic coplanar calibration requires at least five data points.  Basic
non-coplanar calibration requires at least seven data points.  Fully
optimized calibration requires at least 11 data points for either
coplanar and non-coplanar data.

The sx camera parameter cannot be calibrated for using coplanar data.  Its
value is left unchanged in the coplanar calibration routines.


3.2 - Distribution of data points

To accurately estimate the radial lens distortion and image center
parameters the calibration data should be distributed broadly across the
field of view.  The distribution of data points should, if possible, span
the range of depths that you expect to use the model over.


3.3 - Placement of world coordinate system origin

Tsai's algorithm fails if the origin of the world coordinate system is
near the center of the camera's field of view or near the Y axis of the
camera coordinate system.  The Y axis requirement ensures Ty is not
exactly zero which is an explicit requirement in Tsai's algorithm.

If your calibration data doesn't meet the above criteria you can simply
create a new, artificial coordinate frame for the data that is offset
from the world coordinate frame that you plan on working with.  Just add
the offset into the data before you calibrate with it.


3.4 - Perspective projection effects (or lack thereof)

To be able to separate the effects of f and Tz on the image there needs
to be perspective distortion (foreshortening) effects in the calibration
data.  For useable perspective distortion the distance between the
calibration points nearest and farthest from the camera should be on the
same scale as the distance between the calibration points and the
camera.  This applies both to coplanar and non-coplanar calibration.

For co-planar calibration the worst case situation is to have the 3D
points lie in a plane parallel to the camera's image plane (all points
an equal distance away).  Simple geometry tells us we can't separate the
effects of f and Tz.  A relative angle of 30 degrees or more is
recommended to give some effective depth to the data points.

For non-coplanar calibration the worse case situation is to have the 3D
points lie in a volume of space that is relatively small compared to the
volume's distance to the camera.  From a distance the image formation
process is closer to orthographic (not perspective) projection and the
calibration problem becomes poorly conditioned.


3.5 - Subpixel measurement of image features

To obtain accurate calibration data we need to measure the location of
features in the image plane to subpixel accuracy.  Three good starting
points on the subject are:

 "Accuracy in Image Measure", Pascal Brand and Roger Mohr, LIFIA - INRIA
 Rhones-Alpes, SPIE Vol. 2350 Videometrics III (1994) pages 218-228,

 "An evaluation of subpixel feature localisation methods for precision
 measurement", Robert J. Valkenburg, Alan M. McIvor, and P. Wayne Power,
 Machine Vision Group, Industrial Research Limited, SPIE Vol. 2350
 Videometrics III (1994) pages 229-238,

and

 "A comparison of some techniques for the subpixel location of discrete
 target images", M. R. Shortis, T. A. Clarke, and T. Short, Department of
 Surveying and Land Information, University of Melbourne, SPIE Vol. 2350
 Videometrics III (1994) pages 239-250.


4 - What are some of the nonlinear optimization issues?

Nonlinear optimization for these camera calibration routines is
performed by the MINPACK "lmdif" subroutine.  "lmdif" uses a modified
Levenberg-Marquardt algorithm with a jacobian calculated by a
forward-difference approximation.  The MINPACK FORTRAN source was
translated into C using the f2c program.

The function "dpmpar" provides double precision machine parameters for
the MINPACK functions.  The routines in this release are set up to use
the machine constants for the IEEE double precision floating point.  If
your machine uses a different floating point standard try looking in the
"dpmpar" source to see if the appropriate machine constants are
available.


5 - Where can I find more information on Tsai's algorithm?

An explanation of the basic algorithms and description of the variables
can be found in several publications, including:

 "An Efficient and Accurate Camera Calibration Technique for 3D Machine
 Vision", Roger Y. Tsai, Proceedings of IEEE Conference on Computer Vision
 and Pattern Recognition, Miami Beach, FL, 1986, pages 364-374.

and

 "A versatile Camera Calibration Technique for High-Accuracy 3D Machine
 Vision Metrology Using Off-the-Shelf TV Cameras and Lenses", Roger Y. Tsai,
 IEEE Journal of Robotics and Automation, Vol. RA-3, No. 4, August 1987,
 pages 323-344.


6 - Comments and thanks

Questions, comments, suggestions, or bug reports on Tsai's algorithm, this
implementation, or camera calibration in general can be mailed to:
rgwillson@mmm.com.  Special thanks to the following persons for
contributing their time, effort, and code!

 o Piotr Jasiobedzki <piotr@vis.toronto.edu> 
 o Jim Vaughan <vaughan@brighton.ac.uk>
 o Franz-Josef L|cke <luecke@zinfo.zess.uni-siegen.de>
 o Pete Rander <Peter.Rander@ius4.ius.cs.cmu.edu>
 o Markus Menke <extern31@radsy1.inet.dkfz-heidelberg.de>
 o Ron Steriti <steriti@dragon.cpe.uml.edu>
 o Torfi Thorhallsson <torfit@verk.hi.is>
 o Frederic Devernay <Frederic.Devernay@sophia.inria.fr>
 o Volker Rodehorst <vr@cs.tuoberlin.de>
 o Jon Owen <jcowen@cs.utah.edu>

###########################################################

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久久久久久久久久黄色| 久久国产综合精品| 国产午夜精品一区二区三区视频 | 亚洲最大成人综合| 国产精品国产三级国产aⅴ原创| 久久久亚洲精华液精华液精华液| 欧美v国产在线一区二区三区| 欧美性色黄大片| 7777精品伊人久久久大香线蕉完整版 | 亚洲永久免费视频| 亚洲一级二级三级| 亚洲成人午夜影院| 婷婷综合久久一区二区三区| 图片区日韩欧美亚洲| 美女免费视频一区| 国产精品一区二区在线观看不卡 | 9191成人精品久久| 日韩视频在线永久播放| 日韩精品一区二区三区视频播放| 欧美一区二区三区视频在线观看| 欧美v日韩v国产v| 国产精品欧美一级免费| 日韩理论电影院| 亚洲无人区一区| 美女诱惑一区二区| a在线欧美一区| 欧美日韩精品一区二区三区四区 | 日韩精品乱码av一区二区| 美女高潮久久久| 风间由美性色一区二区三区| 51精品久久久久久久蜜臀| 综合久久一区二区三区| 欧美剧在线免费观看网站| 国产69精品久久久久777| 欧美三级三级三级| 国产精品综合在线视频| 91在线视频播放地址| 678五月天丁香亚洲综合网| 久久久国产精品午夜一区ai换脸| 国产精品美女久久久久久久久| 有坂深雪av一区二区精品| 午夜久久久久久久久| 国产在线乱码一区二区三区| 97精品超碰一区二区三区| 欧美军同video69gay| 国产精品美女久久久久久久久| 亚洲成人综合网站| 国产一区二区不卡老阿姨| 在线观看亚洲精品| 国产亚洲欧美日韩在线一区| 亚洲精品综合在线| 国产成人精品免费在线| 欧美精品少妇一区二区三区| 国产精品久久久久aaaa| 韩国一区二区三区| 91精品国产乱| 亚洲综合色自拍一区| 成人精品gif动图一区| 日韩欧美你懂的| 午夜影院久久久| 91视频国产资源| 中文字幕亚洲成人| 国产a区久久久| 欧美成人国产一区二区| 亚洲超碰精品一区二区| 在线视频综合导航| 亚洲精品免费电影| 94-欧美-setu| 亚洲人一二三区| 国产白丝网站精品污在线入口| 欧美美女网站色| 一区二区三区中文字幕精品精品| 成人毛片视频在线观看| 中文字幕欧美日韩一区| 成人综合在线视频| 国产精品青草综合久久久久99| 国产精品一品视频| 日本一区二区三区四区在线视频| 国内精品久久久久影院色| 欧美大片一区二区三区| 青青草精品视频| 久久综合久久久久88| 极品美女销魂一区二区三区免费| 欧美一区二区三区四区五区| 蜜桃视频在线一区| 精品欧美乱码久久久久久1区2区| 天天亚洲美女在线视频| 欧美精品亚洲一区二区在线播放| 日本vs亚洲vs韩国一区三区二区| 欧美巨大另类极品videosbest | 91日韩在线专区| 亚洲人成7777| 在线观看日韩精品| 日本不卡高清视频| 久久久国际精品| 色悠悠亚洲一区二区| 亚洲123区在线观看| 欧美一区二区三区免费在线看| 久久 天天综合| 免费高清成人在线| 精品免费视频一区二区| 国产91精品精华液一区二区三区 | 色av综合在线| 午夜电影网亚洲视频| 精品国产一区二区国模嫣然| 国产乱妇无码大片在线观看| 一区免费观看视频| 日韩一区二区视频| 成人av午夜电影| 亚洲国产精品视频| 久久精品一区二区三区不卡 | 懂色av中文字幕一区二区三区| 国产精品传媒在线| 4438成人网| 成人av网址在线| 麻豆精品在线观看| 亚洲欧洲综合另类| 日韩一区二区免费在线观看| 成a人片国产精品| 免费观看日韩av| 成人欧美一区二区三区小说| 欧美色综合网站| 国产不卡视频在线播放| 亚洲成av人片观看| 中文字幕一区二| 久久久久久久久99精品| 欧美三区在线观看| 国产成人a级片| 日本一不卡视频| 亚洲欧美色一区| 日本一区二区三区国色天香| 欧美日韩中字一区| eeuss鲁片一区二区三区在线观看 eeuss鲁片一区二区三区在线看 | 午夜精品aaa| 日韩毛片高清在线播放| 欧美精品一区二区三区很污很色的 | 韩国av一区二区| 日本不卡123| 亚洲一卡二卡三卡四卡无卡久久 | 中文字幕一区二区三区av| 精品国产成人系列| 欧美一级片在线观看| 91久久精品一区二区三区| 成人开心网精品视频| 黄色精品一二区| 精品在线免费观看| 全部av―极品视觉盛宴亚洲| 亚洲一区二区四区蜜桃| 亚洲欧美日韩电影| 亚洲天堂精品在线观看| 自拍偷拍亚洲综合| 国产精品福利av| 国产精品夫妻自拍| 亚洲九九爱视频| 亚洲综合激情小说| 亚洲制服丝袜在线| 国产精品一区二区三区网站| 蜜桃一区二区三区在线| 亚洲sss视频在线视频| 亚洲一区av在线| 一级女性全黄久久生活片免费| 亚洲视频你懂的| 国产精品美女一区二区在线观看| 国产亚洲美州欧州综合国| 国产欧美一区二区在线| 国产欧美一区二区在线| 久久精品一区二区三区不卡| 亚洲国产岛国毛片在线| 自拍偷自拍亚洲精品播放| 亚洲一卡二卡三卡四卡五卡| 婷婷综合另类小说色区| 久久精品国产免费| 国产suv精品一区二区883| 91视频一区二区三区| 欧美日韩国产高清一区二区| 欧美一区二区网站| 久久伊99综合婷婷久久伊| 久久精品在线免费观看| 亚洲精品午夜久久久| 免费看精品久久片| 国产999精品久久久久久| 99久久99久久综合| 欧美日韩久久一区二区| 欧美va亚洲va| 亚洲色图另类专区| 人人狠狠综合久久亚洲| 成人福利视频网站| 欧美人狂配大交3d怪物一区 | 国产欧美视频在线观看| 亚洲欧美偷拍另类a∨色屁股| 天堂午夜影视日韩欧美一区二区| 激情综合色综合久久| 91香蕉视频在线| 欧美一级夜夜爽| 综合自拍亚洲综合图不卡区| 午夜激情一区二区三区| 成人综合在线观看| 日韩精品一区二区三区swag| 中文字幕亚洲在| 国产麻豆一精品一av一免费|