?? bvp_homt_jac.asv
字號:
% Jacobian of boundary value problem
%
% ============================================
function result = BVP_HomT_jac(x,p,YS,YU,J)
global homTds
ups = reshape(x,homTds.nphase,homTds.npoints);
%p = num2cell(p);
% Allocate space for sparse jacobian
ks=homTds.nphase*homTds.npoints+(homTds.nphase-homTds.nu)*homTds.nu+(homTds.nphase-homTds.ns)*homTds.ns;
result = spalloc(ks,ks+1,ks/2);
n=homTds.nphase;
N=homTds.npoints;
x1=ups(:,1);
% Component 1 (the initial fixed point)
% ===========
A1=homT_jac(x1,p,J);
result(1:n, 1:n) = A1-eye(n);
%Derivatives w.r.t active parameter
%jp=homjacp(x1,p,J);
%result(1:n, ks+1) = jp;
%result(1:2,:),pause
% Component 2 (the iteration conditions)
% ===========
for j=3:N
result((j-2)*n+1:(j-1)*n, (j-2)*n+1:(j-1)*n)=homT_jac(ups(:,j-1),p,J);
result((j-2)*n+1:(j-1)*n, (j-1)*n+1:j*n)=-eye(n);
end
%Derivatives w.r.t active parameter
% for j=3:N
% jp=homjacp(ups(:,j-1),p,J);
% result((j-2)*n+1:(j-1)*n, ks+1)=jp;%jp(:,homTds.ActiveParams);
% end
% Component 3 (UNSTABLE)
% Ricatti blocks from unstable eigenspace
% F(Y_U)=R22Y_U-Y_UR11+E21-Y_UR12Y_U;
% ===========
% D1=R_22Y_U
Q0U = homTds.Q0;
[R11, R12, E21, R22] = homT_RicattiCoeff(Q0U,A1,homTds.nu);
% derivatives of D1 = R22 * YU w.r.t (Y_U)ij
l=n*(N-1); h=N*n;
for j=1:n-homTds.nu
for i=1:homTds.nu
idx1=l+i+(j-1)*homTds.nu;
idx2=h+1+(i-1)*(n-homTds.nu);
idx3=h+(n-homTds.nu)+(i-1)*(n-homTds.nu);
result(idx1,idx2:idx3)=result(idx1,idx2:idx3)+R22(j,1:n-homTds.nu);
end
end
% derivatives of D2 = YU * R11 w.r.t (Y_U)ij
for j=1:n-homTds.nu
for s=1:homTds.nu
idx1=l+1+(j-1)*homTds.nu;
idx2=l+homTds.nu+(j-1)*homTds.nu;
idx3=h+j+(s-1)*(n-homTds.nu);
% result(idx1:idx2,idx3)=result(idx1:idx2,idx3)-(R11(1:homTds.nu,i))';
result(idx1:idx2,idx3)=result(idx1:idx2,idx3)-(R11(s,1:homTds.nu))';
end
end
% derivatives of D3 = YU * R12*YU w.r.t (Y_U)ij
D31=-homTds.YU*R12;
for j=1:n-homTds.nu
for i=1:homTds.nu
idx1=l+i+(j-1)*homTds.nu;
idx2=h+1+(i-1)*(n-homTds.nu);
idx3=h+n-homTds.nu+(i-1)*(n-homTds.nu);
result(idx1,idx2:idx3)=result(idx1,idx2:idx3)+D31(j,:);
end
end
D32=-R12*homTds.YU;
for j=1:n-homTds.nu
for s=1:homTds.nu
idx1=l+i+(j-1)*homTds.nu;
idx2=l+homTds.nu+(j-1)*homTds.nu;
idx3=h+j+(s-1)*(n-homTds.nu);
result(idx1:idx2,idx3)=result(idx1:idx2,idx3)+D31(j,:);
end
end
% Component 4
% derivatives of F(YU) w.r.t x1
hess=HomT_hess(x1,p,J);
l=n*(N-1); Q0=homTds.Q0;
for i=1:n
D=Q0'*hess(:,:,i)*Q0;
D1=D(1:homTds.nu,1:homTds.nu);
D2=D(1:homTds.nu,homTds.nu+1:n);
D3=D(homTds.nu+1:n,1:homTds.nu);
D4=D(homTds.nu+1:n,homTds.nu+1:n);
for j=1:n-homTds.nu
for s=1:homTds.nu;
idx=l+s+(j-1)*homTds.nu;
result(idx,i)=result(idx,i)+D4(j,:)*homTds.YU(:,s)-homTds.YU(j,:)*D1(:,s)+D3(j,s);
for k=1:homTds.nu
result(idx,i)=result(idx,i)-homTds.YU(j,k)*(D2(k,:)*YU(:,s));
end
end
end
end
%result(21,1),result(21,2),pause
%%%%%%%%%%%%%%%%%%%%%%%%%
% Component 5% STABLE
% Ricatti blocks from stable eigenspace
% F(Y_S)=R22Y_S-Y_SR11+E21-YR12Y_S;
% =========
% D1=R_22Y_S
Q1S = homTds.Q1;
[R11, R12, E21, R22] = homT_RicattiCoeff(Q1S,A1,homTds.ns);
% derivatives of D1 = R22 * Y_S w.r.t (YS)ij
l=n*(N-1)+(n-homTds.nu)*homTds.nu; h=N*n+(n-homTds.nu)*homTds.nu;
for j=1:n-homTds.ns
for i=1:homTds.ns
idx1=l+i+(j-1)*homTds.ns;
idx2=h+1+(i-1)*(n-homTds.ns);
idx3=h+(n-homTds.ns)+(i-1)*(n-homTds.ns);
result(idx1,idx2:idx3)=result(idx1,idx2:idx3)+R22(j,:);
end
end
% derivatives of D2= Y_S * R11 w.r.t (YS)ij
for j=1:n-homTds.ns
for s=1:homTds.ns
idx1=l+i+(j-1)*homTds.ns;
idx2=h+homTds.nu+(j-1)*homTds.ns;
idx3=h+j+(s-1)*(n-homTds.ns);
result(idx1,idx2:idx3)=result(idx1,idx2:idx3)-(R11(s,:))';
end
end
% derivatives of D3 = YS * R12*YS w.r.t (YS)ij
D31=-homTds.YS*R12;
for j=1:n-homTds.ns
for i=1:homTds.ns
idx1=l+i+(j-1)*homTds.ns;
idx2=h+1+(i-1)*(n-homTds.ns);
idx3=h+n-homTds.ns+(i-1)*(n-homTds.ns);
result(idx1,idx2:idx3)=result(idx1,idx2:idx3)+D31(j,:);
end
end
D32=-R12*homTds.YS;
for j=1:n-homTds.ns
for s=1:homTds.ns
idx1=l+1+(j-1)*homTds.ns;
idx2=l+homTds.ns+(j-1)*homTds.ns;
idx3=h+j+(s-1)*(n-homTds.ns);
result(idx1:idx2,idx3)=result(idx1:idx2,idx3)+(D32(s,:))';
end
end
%result(22,24),pause
%%%%%%%%%%%%%%%%%%%%%%%%
% Component 7
% derivatives of F(Y_U)=R22Y_U-Y_UR11+E21-Y_UR12Y_U; w.r.t the active parameter
% hessp=Hom_hessp(x1,p,J);
% l=n*(N-1); Q0=homTds.Q0;
% D=Q0'*hessp*Q0;
% D1=D(1:homTds.nu,1:homTds.nu);
% D2=D(1:homTds.nu,1:homTds.nu+1:n);
% D3=D(homTds.nu+1:n,1:homTds.nu);
% D4=D(homTds.nu+1:n,homTds.nu+1:n);
% for j=1:n-homTds.nu
% for s=1:homTds.nu;
% idx=l+s+(j-1)*homTds.nu;
% result(idx,ks+1)=result(idx,ks+1)+D4(j,:)*homTds.YU(:,s)-homTds.YU(j,:)*D1(:,s)+D3(j,s);
% for k=1:homTds.nu
% result(idx,ks+1)=result(idx,ks+1)-homTds.YU(j,k)*(D2(k,:)*YU(:,s));
% end
% end
% end
% Component 7
% derivatives of F(Y_S) w.r.t x1
hess=HomT_hess(x1,p,J);
l=n*(N-1)+(n-homTds.nu)*homTds.nu;
Q1=homTds.Q1;
for i=1:n
D=Q1'*hess(:,:,i)*Q1;
D1=D(1:homTds.nu,1:homTds.nu);
D2=D(1:homTds.nu,homTds.nu+1:n);
D3=D(homTds.nu+1:n,1:homTds.nu);
D4=D(homTds.nu+1:n,homTds.nu+1:n);
for j=1:n-homTds.nu
for s=1:homTds.nu;
idx=l+s+(j-1)*homTds.nu;
result(idx,i)=result(idx,i)+D4(j,:)*homTds.YU(:,s)-homTds.YU(j,:)*D1(:,s)+D3(j,s);
for k=1:homTds.nu
result(idx,i)=result(idx,i)-homTds.YU(j,k)*(D2(k,:)*YU(:,s));
end
end
end
end
%result(22,1),result(22,2),pause
% Derivatives of F(Y_S)=R22Y_S-Y_SR11+E21-Y_SR12Y_S w.r.t the active parameter
% hessp=Hom_hessp(x1,p,J);
% l=n*(N-1)+homTds.nu*(n-homTds.nu);
% Q1=homTds.Q1;
% D=Q1'*hessp*Q1;
% D1=D(1:homTds.ns,1:homTds.ns);
% D2=D(1:homTds.ns,1:homTds.ns+1:n);
% D3=D(homTds.ns+1:n,1:homTds.ns);
% D4=D(homTds.ns+1:n,homTds.ns+1:n);
% for j=1:n-homTds.ns
% for s=1:homTds.ns;
% idx=l+s+(j-1)*homTds.ns;
% result(idx,ks+1)=D4(j,:)*homTds.YS(:,s)-homTds.YS(j,:)*D1(:,s)+D3(j,s);
% for k=1:homTds.nu
% result(idx,ks+1)=result(idx,ks+1)-homTds.YS(j,k)*(D2(k,:)*YS(:,s));
% end
% end
% end
%result,pause
% Component 7 (First vector along unstable eigenspaces)
% ===========
% derivatives w.r.t x1
Q0U = homTds.Q0;
vect = ups(:,2) - x1;
QU =Q0U*[-YU'; eye(size(YU,1))];
l=n*(N-1)+(n-homTds.nu)*homTds.nu+(n-homTds.ns)*homTds.ns;
for i=1:n-homTds.nu
result(l+i, 1:n )=-QU(:,i)';
end
%result(23,1:2),pause
% derivatives w.r.t x2
vect = ups(:,2) - x1;
l=n*(N-1)+(n-homTds.nu)*homTds.nu+(n-homTds.ns)*homTds.ns;
for i=1:n-homTds.nu
result(l+i, n+1:2*n )=QU(:,i)';
end
% result(23,3:4),pause
% derivatives w.r.t components of YU_{(nu+i)}
H=vect'*Q0U;h=n*N;h=n*N;H=H(homTds.nu);
for i=1:1:n-homTds.nu
idx1=h+1+(n-homTds.nu)*(i-1);
idx2=h+homTds.nu+(n-homTds.nu)*(i-1);
result(l+i,idx1:idx2)=result(l+i,idx1:idx2)-H;
end
%result(23,23),pause
% Component 8 (Last vectors along stable eigenspaces)
% ===========
% derivatives w.r.t xN
Q1S = homTds.Q1;
%vect = ups(:,N-1) - x1;
vect = ups(:,N) - x1;
QS =Q1S*[-YS'; eye(size(YS,1))];
l=n*(N-1)+(n-homTds.nu)*homTds.nu+(n-homTds.ns)*homTds.ns+homTds.ns;
for i=1:n-homTds.ns
result(l+i, n*(N-1)+1:n*N)=result(l+i, n*(N-1)+1:n*N)+QS(:,i)';
end
%result(24,21:22),pause
% derivatives w.r.t x1
l=n*(N-1)+(n-homTds.nu)*homTds.nu+(n-homTds.ns)*homTds.ns+homTds.ns;
for i=1:n-homTds.nu
result(l+i, 1:n )=-QS(:,i)';
end
% result(24,1:2),pause
% derivatives w.r.t components of YU_{(nu+i)}
vect = ups(:,N) - x1;
H=vect'*Q1S;h=n*N+(n-homTds.nu)*homTds.nu;
for i=1:1:n-homTds.ns
for j=1:homTds.ns
result(l+i,h+j+(n-homTds.ns)*(i-1))=-H(j);
end
end
88,size(result),pause
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -