亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? 使用svm實現了分類和擬合功能 帶有源文件
??
?? 第 1 頁 / 共 2 頁
字號:
Libsvm is a simple, easy-to-use, and efficient software for SVMclassification and regression. It solves C-SVM classification, nu-SVMclassification, one-class-SVM, epsilon-SVM regression, and nu-SVMregression. It also provides an automatic model selection tool forC-SVM classification. This document explains the use of libsvm.Libsvm is available at http://www.csie.ntu.edu.tw/~cjlin/libsvmPlease read the COPYRIGHT file before using libsvm.Table of Contents=================- Quick Start- Installation and Data Format- `svm-train' Usage- `svm-predict' Usage- `svm-scale' Usage- Tips on Practical Use- Examples- Precomputed Kernels - Library Usage- Java Version- Building Windows Binaries- Additional Tools: Sub-sampling, Parameter Selection, Format checking, etc.- Python Interface- Additional InformationQuick Start===========If you are new to SVM and if the data is not large, please go to `tools' directory and use easy.py after installation. It does everything automatic -- from data scaling to parameter selection.Usage: easy.py training_file [testing_file]More information about parameter selection can be found in`tools/README.'Installation and Data Format============================On Unix systems, type `make' to build the `svm-train' and `svm-predict'programs. Run them without arguments to show the usages of them.On other systems, consult `Makefile' to build them (e.g., see'Building Windows binaries' in this file) or use the pre-builtbinaries (Windows binaries are in the directory `windows').The format of training and testing data file is:<label> <index1>:<value1> <index2>:<value2> ......Each line contains an instance and is ended by a '\n' character.  Forclassification, <label> is an integer indicating the class label(multi-class is supported). For regression, <label> is the targetvalue which can be any real number. For one-class SVM, it's not usedso can be any number.  Except using precomputed kernels (explained inanother section), <index>:<value> gives a feature (attribute) value.<index> is an integer starting from 1 and <value> is a realnumber. Indices must be in ASCENDING order. Labels in the testingfile are only used to calculate accuracy or errors. If they areunknown, just fill the first column with any numbers.A sample classification data included in this package is`heart_scale'. To check if your data is in a correct form, use`tools/checkdata.py' (details in `tools/README').Type `svm-train heart_scale', and the program will read the trainingdata and output the model file `heart_scale.model'. If you have a testset called heart_scale.t, then type `svm-predict heart_scale.theart_scale.model output' to see the prediction accuracy. The `output'file contains the predicted class labels.There are some other useful programs in this package.svm-scale:	This is a tool for scaling input data file.svm-toy:	This is a simple graphical interface which shows how SVM	separate data in a plane. You can click in the window to 	draw data points. Use "change" button to choose class 	1, 2 or 3 (i.e., up to three classes are supported), "load"	button to load data from a file, "save" button to save data to	a file, "run" button to obtain an SVM model, and "clear"	button to clear the window.	You can enter options in the bottom of the window, the syntax of	options is the same as `svm-train'.	Note that "load" and "save" consider data in the	classification but not the regression case. Each data point	has one label (the color) which must be 1, 2, or 3 and two	attributes (x-axis and y-axis values) in [0,1].	Type `make' in respective directories to build them.	You need Qt library to build the Qt version.	(available from http://www.trolltech.com)	You need GTK+ library to build the GTK version.	(available from http://www.gtk.org)		The pre-built Windows binaries are in the `windows'	directory. We use Visual C++ on a 32-bit machine, so the	maximal cache size is 2GB.`svm-train' Usage=================Usage: svm-train [options] training_set_file [model_file]options:-s svm_type : set type of SVM (default 0)	0 -- C-SVC	1 -- nu-SVC	2 -- one-class SVM	3 -- epsilon-SVR	4 -- nu-SVR-t kernel_type : set type of kernel function (default 2)	0 -- linear: u'*v	1 -- polynomial: (gamma*u'*v + coef0)^degree	2 -- radial basis function: exp(-gamma*|u-v|^2)	3 -- sigmoid: tanh(gamma*u'*v + coef0)	4 -- precomputed kernel (kernel values in training_set_file)-d degree : set degree in kernel function (default 3)-g gamma : set gamma in kernel function (default 1/k)-r coef0 : set coef0 in kernel function (default 0)-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)-m cachesize : set cache memory size in MB (default 100)-e epsilon : set tolerance of termination criterion (default 0.001)-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)-b probability_estimates: whether to train an SVC or SVR model for probability estimates, 0 or 1 (default 0)-wi weight: set the parameter C of class i to weight*C in C-SVC (default 1)-v n: n-fold cross validation modeThe k in the -g option means the number of attributes in the input data.option -v randomly splits the data into n parts and calculates crossvalidation accuracy/mean squared error on them.See libsvm FAQ for the meaning of outputs.`svm-predict' Usage===================Usage: svm-predict [options] test_file model_file output_fileoptions:-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supportedmodel_file is the model file generated by svm-train.test_file is the test data you want to predict.svm-predict will produce output in the output_file.`svm-scale' Usage=================Usage: svm-scale [options] data_filenameoptions:-l lower : x scaling lower limit (default -1)-u upper : x scaling upper limit (default +1)-y y_lower y_upper : y scaling limits (default: no y scaling)-s save_filename : save scaling parameters to save_filename-r restore_filename : restore scaling parameters from restore_filenameSee 'Examples' in this file for examples.Tips on Practical Use=====================* Scale your data. For example, scale each attribute to [0,1] or [-1,+1].* For C-SVC, consider using the model selection tool in the tools directory.* nu in nu-SVC/one-class-SVM/nu-SVR approximates the fraction of training  errors and support vectors.* If data for classification are unbalanced (e.g. many positive and  few negative), try different penalty parameters C by -wi (see  examples below).* Specify larger cache size (i.e., larger -m) for huge problems.Examples========> svm-scale -l -1 -u 1 -s range train > train.scale> svm-scale -r range test > test.scaleScale each feature of the training data to be in [-1,1]. Scalingfactors are stored in the file range and then used for scaling thetest data.> svm-train -s 0 -c 5 -t 2 -g 0.5 -e 0.1 data_file Train a classifier with RBF kernel exp(-0.5|u-v|^2), C=10, andstopping tolerance 0.1.> svm-train -s 3 -p 0.1 -t 0 data_fileSolve SVM regression with linear kernel u'v and epsilon=0.1in the loss function.> svm-train -c 10 -w1 1 -w-1 5 data_fileTrain a classifier with penalty 10 = 1 * 10 for class 1 and penalty 50= 5 * 50 for class -1.> svm-train -s 0 -c 100 -g 0.1 -v 5 data_fileDo five-fold cross validation for the classifier usingthe parameters C = 100 and gamma = 0.1> svm-train -s 0 -b 1 data_file> svm-predict -b 1 test_file data_file.model output_fileObtain a model with probability information and predict test data withprobability estimatesPrecomputed Kernels ===================Users may precompute kernel values and input them as training andtesting files.  Then libsvm does not need the originaltraining/testing sets.Assume there are L training instances x1, ..., xL and. Let K(x, y) be the kernelvalue of two instances x and y. The input formatsare:New training instance for xi:<label> 0:i 1:K(xi,x1) ... L:K(xi,xL) New testing instance for any x:<label> 0:? 1:K(x,x1) ... L:K(x,xL) That is, in the training file the first column must be the "ID" ofxi. In testing, ? can be any value.All kernel values including ZEROs must be explicitly provided.  Anypermutation or random subsets of the training/testing files are alsovalid (see examples below).Note: the format is slightly different from the precomputed kernelpackage released in libsvmtools earlier.Examples:	Assume the original training data has three four-feature	instances and testing data has one instance:	15  1:1 2:1 3:1 4:1	45      2:3     4:3	25          3:1	15  1:1     3:1	If the linear kernel is used, we have the following new	training/testing sets:	15  0:1 1:4 2:6  3:1	45  0:2 1:6 2:18 3:0 	25  0:3 1:1 2:0  3:1 	15  0:? 1:2 2:0  3:1	? can be any value.	Any subset of the above training file is also valid. For example,	25  0:3 1:1 2:0  3:1	45  0:2 1:6 2:18 3:0 	implies that the kernel matrix is		[K(2,2) K(2,3)] = [18 0]		[K(3,2) K(3,3)] = [0  1]Library Usage=============These functions and structures are declared in the header file`svm.h'.  You need to #include "svm.h" in your C/C++ source files andlink your program with `svm.cpp'. You can see `svm-train.c' and`svm-predict.c' for examples showing how to use them. We defineLIBSVM_VERSION in svm.h, so you can check the version number.Before you classify test data, you need to construct an SVM model(`svm_model') using training data. A model can also be saved ina file for later use. Once an SVM model is available, you can use itto classify new data.- Function: struct svm_model *svm_train(const struct svm_problem *prob,					const struct svm_parameter *param);    This function constructs and returns an SVM model according to    the given training data and parameters.    struct svm_problem describes the problem:		struct svm_problem	{		int l;		double *y;		struct svm_node **x;	};     where `l' is the number of training data, and `y' is an array containing    their target values. (integers in classification, real numbers in    regression) `x' is an array of pointers, each of which points to a sparse    representation (array of svm_node) of one training vector. 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美一区二区国产| 色婷婷亚洲一区二区三区| 日韩欧美一二三| 男女性色大片免费观看一区二区| 7777女厕盗摄久久久| 久久精品国产亚洲一区二区三区 | 97se亚洲国产综合自在线观| 国产精品久久久久三级| 91精彩视频在线观看| 欧美aaa在线| 国产农村妇女精品| 欧美性大战久久久久久久 | 日韩精品一区二区三区在线观看| 精品在线观看视频| 国产精品色婷婷| 欧美色涩在线第一页| 久久精品国产亚洲a| 国产精品国模大尺度视频| 欧美日韩亚洲另类| 精品一区在线看| 日韩美女精品在线| 欧美军同video69gay| 国产在线精品免费av| 亚洲人精品一区| 日韩一二在线观看| 91在线精品秘密一区二区| 日韩电影在线免费| 国产精品久久久久久久久久久免费看 | 日韩 欧美一区二区三区| 久久久99久久精品欧美| 欧美日韩一区 二区 三区 久久精品 | 欧美性一级生活| 免费国产亚洲视频| 亚洲精品日日夜夜| 久久久亚洲国产美女国产盗摄| 91麻豆免费在线观看| 毛片av一区二区| 一区二区三区日韩| 欧美激情一区二区三区在线| 在线播放91灌醉迷j高跟美女| 风间由美中文字幕在线看视频国产欧美| 亚洲免费资源在线播放| 久久久久久久久久久电影| 欧美日本一道本在线视频| 成人午夜av电影| 久久99日本精品| 五月天一区二区| 亚洲欧美怡红院| 久久精品夜夜夜夜久久| 制服丝袜中文字幕一区| 91亚洲精品久久久蜜桃网站| 日日夜夜精品视频天天综合网| 国产精品热久久久久夜色精品三区 | 日韩一区二区三区视频| 欧美综合一区二区| www.亚洲在线| 成人午夜电影小说| 国产一区二区伦理片| 日韩高清欧美激情| 亚洲一区在线观看免费观看电影高清| 中文子幕无线码一区tr| 精品国产三级电影在线观看| 91精品蜜臀在线一区尤物| 欧美日韩国产一级二级| 色综合久久88色综合天天 | 亚洲欧美另类在线| 国产精品你懂的在线欣赏| 精品福利av导航| 日韩欧美视频一区| 欧美一区二区女人| 日韩一级免费观看| 日韩一区二区在线观看| 在线成人av影院| 欧美日韩成人一区二区| 欧美日韩国产综合一区二区| 欧美三区在线视频| 6080亚洲精品一区二区| 欧美一级欧美一级在线播放| 日韩你懂的在线观看| 精品久久久久久久人人人人传媒| 91精品国产综合久久精品性色| 欧美精品三级在线观看| 欧美一区二区三区在线| 精品免费一区二区三区| 精品成人在线观看| 欧美激情一二三区| 日韩毛片精品高清免费| 亚洲一区二区视频| 日韩高清电影一区| 激情成人综合网| aaa亚洲精品| 精品视频免费在线| 欧美一卡2卡3卡4卡| 欧美videossexotv100| 久久久夜色精品亚洲| 国产精品二三区| 亚洲一区二区在线观看视频| 亚洲成人av中文| 精品一区二区在线免费观看| 国产精品99久久久久久久女警| www.亚洲国产| 欧美日韩国产不卡| 2020日本不卡一区二区视频| 国产视频亚洲色图| 亚洲最新在线观看| 免费精品视频在线| 国产69精品久久久久毛片| 色婷婷久久久亚洲一区二区三区| 欧美日韩国产欧美日美国产精品| 欧美videos大乳护士334| 亚洲欧洲成人自拍| 日韩国产在线一| 成人性生交大合| 欧美色网一区二区| 久久午夜老司机| 亚洲综合在线免费观看| 开心九九激情九九欧美日韩精美视频电影| 国产精品456| 91超碰这里只有精品国产| 久久久久国产精品麻豆ai换脸| 亚洲女人****多毛耸耸8| 蜜桃av一区二区在线观看| 色偷偷一区二区三区| 久久免费视频一区| 日韩精品亚洲专区| 99re成人精品视频| 久久免费精品国产久精品久久久久| 亚洲精品免费看| 国产精品小仙女| 日韩一级在线观看| 亚洲综合一二三区| av网站免费线看精品| 久久青草欧美一区二区三区| 午夜视频一区在线观看| 99久久精品国产精品久久| www国产精品av| 午夜视频在线观看一区二区| av不卡免费电影| 国产亚洲综合在线| 麻豆国产91在线播放| 欧美日韩在线不卡| 伊人色综合久久天天人手人婷| 国产sm精品调教视频网站| 日韩一区二区中文字幕| 亚洲国产成人porn| 99麻豆久久久国产精品免费 | 欧美sm极限捆绑bd| 亚洲一级不卡视频| 94-欧美-setu| 亚洲三级理论片| 波多野结衣视频一区| 国产女人水真多18毛片18精品视频| 欧美aaa在线| 欧美亚洲国产一区二区三区va | 日韩美一区二区三区| 亚洲成人免费在线观看| 在线观看国产日韩| 一区二区三区四区中文字幕| 91丨九色丨蝌蚪丨老版| 1区2区3区精品视频| 粉嫩蜜臀av国产精品网站| 久久精品在线免费观看| 国内精品视频一区二区三区八戒| 日韩欧美中文字幕精品| 日本欧美一区二区三区| 欧美一区二区大片| 久久精品国产77777蜜臀| 日韩久久免费av| 久久精品免费观看| 日韩一本二本av| 国产一区日韩二区欧美三区| wwwwww.欧美系列| 国v精品久久久网| 亚洲欧美一区二区三区孕妇| 色婷婷精品久久二区二区蜜臀av| 亚洲综合色婷婷| 91麻豆精品国产91久久久久久久久| 日本特黄久久久高潮| xnxx国产精品| av在线综合网| 亚洲第一激情av| 欧美变态tickling挠脚心| 国产高清在线精品| 自拍偷拍亚洲激情| 欧美日韩成人综合| 狠狠久久亚洲欧美| 国产精品久久久久久亚洲伦| 色婷婷综合久久| 肉丝袜脚交视频一区二区| 欧美mv和日韩mv国产网站| 成人精品视频一区| 亚洲一区免费视频| 日韩欧美一区二区视频| 国产精品自产自拍| 亚洲三级电影网站| 欧美变态凌虐bdsm| 91丨九色丨国产丨porny| 婷婷中文字幕综合| 国产日韩三级在线| 欧美日韩久久一区二区|