亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? readme

?? 使用svm實(shí)現(xiàn)了分類和擬合功能 帶有源文件
??
?? 第 1 頁 / 共 2 頁
字號:
    For example, if we have the following training data:    LABEL	ATTR1	ATTR2	ATTR3	ATTR4	ATTR5    -----	-----	-----	-----	-----	-----      1		  0	  0.1	  0.2	  0	  0      2		  0	  0.1	  0.3	 -1.2	  0      1		  0.4	  0	  0	  0	  0      2		  0	  0.1	  0	  1.4	  0.5      3		 -0.1	 -0.2	  0.1	  1.1	  0.1    then the components of svm_problem are:    l = 5    y -> 1 2 1 2 3    x -> [ ] -> (2,0.1) (3,0.2) (-1,?)	 [ ] -> (2,0.1) (3,0.3) (4,-1.2) (-1,?)	 [ ] -> (1,0.4) (-1,?)	 [ ] -> (2,0.1) (4,1.4) (5,0.5) (-1,?)	 [ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (-1,?)    where (index,value) is stored in the structure `svm_node':	struct svm_node	{		int index;		double value;	};    index = -1 indicates the end of one vector. Note that indices must    be in ASCENDING order.     struct svm_parameter describes the parameters of an SVM model:	struct svm_parameter	{		int svm_type;		int kernel_type;		int degree;	/* for poly */		double gamma;	/* for poly/rbf/sigmoid */		double coef0;	/* for poly/sigmoid */		/* these are for training only */		double cache_size; /* in MB */		double eps;	/* stopping criteria */		double C;	/* for C_SVC, EPSILON_SVR, and NU_SVR */		int nr_weight;		/* for C_SVC */		int *weight_label;	/* for C_SVC */		double* weight;		/* for C_SVC */		double nu;	/* for NU_SVC, ONE_CLASS, and NU_SVR */		double p;	/* for EPSILON_SVR */		int shrinking;	/* use the shrinking heuristics */		int probability; /* do probability estimates */	};    svm_type can be one of C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR.    C_SVC:		C-SVM classification    NU_SVC:		nu-SVM classification    ONE_CLASS:		one-class-SVM    EPSILON_SVR:	epsilon-SVM regression    NU_SVR:		nu-SVM regression    kernel_type can be one of LINEAR, POLY, RBF, SIGMOID.    LINEAR:	u'*v    POLY:	(gamma*u'*v + coef0)^degree    RBF:	exp(-gamma*|u-v|^2)    SIGMOID:	tanh(gamma*u'*v + coef0)    PRECOMPUTED: kernel values in training_set_file    cache_size is the size of the kernel cache, specified in megabytes.    C is the cost of constraints violation.     eps is the stopping criterion. (we usually use 0.00001 in nu-SVC,    0.001 in others). nu is the parameter in nu-SVM, nu-SVR, and    one-class-SVM. p is the epsilon in epsilon-insensitive loss function    of epsilon-SVM regression. shrinking = 1 means shrinking is conducted;    = 0 otherwise. probability = 1 means model with probability    information is obtained; = 0 otherwise.    nr_weight, weight_label, and weight are used to change the penalty    for some classes (If the weight for a class is not changed, it is    set to 1). This is useful for training classifier using unbalanced    input data or with asymmetric misclassification cost.    nr_weight is the number of elements in the array weight_label and    weight. Each weight[i] corresponds to weight_label[i], meaning that    the penalty of class weight_label[i] is scaled by a factor of weight[i].        If you do not want to change penalty for any of the classes,    just set nr_weight to 0.    *NOTE* Because svm_model contains pointers to svm_problem, you can    not free the memory used by svm_problem if you are still using the    svm_model produced by svm_train().     *NOTE* To avoid wrong parameters, svm_check_parameter() should be    called before svm_train().- Function: double svm_predict(const struct svm_model *model,                               const struct svm_node *x);    This function does classification or regression on a test vector x    given a model.    For a classification model, the predicted class for x is returned.    For a regression model, the function value of x calculated using    the model is returned. For an one-class model, +1 or -1 is    returned.- Function: void svm_cross_validation(const struct svm_problem *prob,	const struct svm_parameter *param, int nr_fold, double *target);    This function conducts cross validation. Data are separated to    nr_fold folds. Under given parameters, sequentially each fold is    validated using the model from training the remaining. Predicted    labels (of all prob's instances) in the validation process are    stored in the array called target.    The format of svm_prob is same as that for svm_train(). - Function: int svm_get_svm_type(const struct svm_model *model);    This function gives svm_type of the model. Possible values of    svm_type are defined in svm.h.- Function: int svm_get_nr_class(const svm_model *model);    For a classification model, this function gives the number of    classes. For a regression or an one-class model, 2 is returned.- Function: void svm_get_labels(const svm_model *model, int* label)        For a classification model, this function outputs the name of    labels into an array called label. For regression and one-class    models, label is unchanged.- Function: double svm_get_svr_probability(const struct svm_model *model);    For a regression model with probability information, this function    outputs a value sigma > 0. For test data, we consider the    probability model: target value = predicted value + z, z: Laplace    distribution e^(-|z|/sigma)/(2sigma)    If the model is not for svr or does not contain required    information, 0 is returned.- Function: void svm_predict_values(const svm_model *model, 				    const svm_node *x, double* dec_values)    This function gives decision values on a test vector x given a    model.    For a classification model with nr_class classes, this function    gives nr_class*(nr_class-1)/2 decision values in the array    dec_values, where nr_class can be obtained from the function    svm_get_nr_class. The order is label[0] vs. label[1], ...,    label[0] vs. label[nr_class-1], label[1] vs. label[2], ...,    label[nr_class-2] vs. label[nr_class-1], where label can be    obtained from the function svm_get_labels.    For a regression model, label[0] is the function value of x    calculated using the model. For one-class model, label[0] is +1 or    -1.- Function: double svm_predict_probability(const struct svm_model *model, 	    const struct svm_node *x, double* prob_estimates);        This function does classification or regression on a test vector x    given a model with probability information.    For a classification model with probability information, this    function gives nr_class probability estimates in the array    prob_estimates. nr_class can be obtained from the function    svm_get_nr_class. The class with the highest probability is    returned. For regression/one-class SVM, the array prob_estimates    is unchanged and the returned value is the same as that of    svm_predict.- Function: const char *svm_check_parameter(const struct svm_problem *prob,                                            const struct svm_parameter *param);    This function checks whether the parameters are within the feasible    range of the problem. This function should be called before calling    svm_train() and svm_cross_validation(). It returns NULL if the    parameters are feasible, otherwise an error message is returned.- Function: int svm_check_probability_model(const struct svm_model *model);    This function checks whether the model contains required    information to do probability estimates. If so, it returns    +1. Otherwise, 0 is returned. This function should be called    before calling svm_get_svr_probability and    svm_predict_probability.- Function: int svm_save_model(const char *model_file_name,			       const struct svm_model *model);    This function saves a model to a file; returns 0 on success, or -1    if an error occurs.- Function: struct svm_model *svm_load_model(const char *model_file_name);    This function returns a pointer to the model read from the file,    or a null pointer if the model could not be loaded.- Function: void svm_destroy_model(struct svm_model *model);    This function frees the memory used by a model.- Function: void svm_destroy_param(struct svm_parameter *param);    This function frees the memory used by a parameter set.Java Version============The pre-compiled java class archive `libsvm.jar' and its source files arein the java directory. To run the programs, usejava -classpath libsvm.jar svm_train <arguments>java -classpath libsvm.jar svm_predict <arguments>java -classpath libsvm.jar svm_toyjava -classpath libsvm.jar svm_scale <arguments>Note that you need Java 1.5 (5.0) or above to run it.You may need to add Java runtime library (like classes.zip) to the classpath.You may need to increase maximum Java heap size.Library usages are similar to the C version. These functions are available:public class svm {	public static final int LIBSVM_VERSION=287; 	public static svm_model svm_train(svm_problem prob, svm_parameter param);	public static void svm_cross_validation(svm_problem prob, svm_parameter param, int nr_fold, double[] target);	public static int svm_get_svm_type(svm_model model);	public static int svm_get_nr_class(svm_model model);	public static void svm_get_labels(svm_model model, int[] label);	public static double svm_get_svr_probability(svm_model model);	public static void svm_predict_values(svm_model model, svm_node[] x, double[] dec_values);	public static double svm_predict(svm_model model, svm_node[] x);	public static double svm_predict_probability(svm_model model, svm_node[] x, double[] prob_estimates);	public static void svm_save_model(String model_file_name, svm_model model) throws IOException	public static svm_model svm_load_model(String model_file_name) throws IOException	public static String svm_check_parameter(svm_problem prob, svm_parameter param);	public static int svm_check_probability_model(svm_model model);}The library is in the "libsvm" package.Note that in Java version, svm_node[] is not ended with a node whose index = -1.Building Windows Binaries=========================Windows binaries are in the directory `windows'. To build them viaVisual C++, use the following steps:1. Open a DOS command box (or Visual Studio Command Prompt) and changeto libsvm directory. If environment variables of VC++ have not beenset, type"C:\Program Files\Microsoft Visual Studio 8\VC\bin\vcvars32.bat"You may have to modify the above according which version of VC++ orwhere it is installed.2. Typenmake -f Makefile.win clean all3. (optional) To build python interface, download and install Python.Edit Makefile.win and change PYTHON_INC and PYTHON_LIB to your pythoninstallation. Typenmake -f Makefile.win python and then copy windows\python\svmc.pyd to the python directory.Another way is to build them from Visual C++ environment. See detailsin libsvm FAQ.- Additional Tools: Sub-sampling, Parameter Selection, Format checking, etc.============================================================================See the README file in the tools directory.Python Interface================See the README file in python directory.Additional Information======================If you find LIBSVM helpful, please cite it asChih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines, 2001.Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvmLIBSVM implementation document is available athttp://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdfFor any questions and comments, please email cjlin@csie.ntu.edu.twAcknowledgments:This work was supported in part by the National Science Council of Taiwan via the grant NSC 89-2213-E-002-013.The authors thank their group members and usersfor many helpful discussions and comments. They are listed inhttp://www.csie.ntu.edu.tw/~cjlin/libsvm/acknowledgements

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91麻豆精品国产综合久久久久久| 精品一区二区三区免费观看| 午夜不卡在线视频| 精品一区二区三区视频在线观看| 国产suv精品一区二区883| 99国产精品久久久久| 欧美日韩成人激情| 国产日韩综合av| 亚洲午夜一区二区三区| 国产一区在线观看麻豆| 色综合久久久网| 精品少妇一区二区三区日产乱码| 亚洲欧洲精品一区二区三区不卡| 日韩av电影一区| 成人av网站大全| 欧美一区二区三区影视| 专区另类欧美日韩| 久久99精品国产.久久久久久| 97久久人人超碰| 日韩精品专区在线影院观看| 国产精品毛片a∨一区二区三区| 午夜av一区二区三区| 成人不卡免费av| 91麻豆精品久久久久蜜臀| 成人免费视频在线观看| 精品无码三级在线观看视频| 欧美色老头old∨ideo| 久久在线观看免费| 午夜视频久久久久久| 成人一二三区视频| 日韩免费高清电影| 亚洲一区在线观看网站| 国产.欧美.日韩| 91精品国产一区二区三区蜜臀 | 五月天中文字幕一区二区| 国产成人aaa| 日韩欧美精品三级| 亚洲成人久久影院| 色婷婷一区二区三区四区| 久久久亚洲高清| 蜜臀a∨国产成人精品| 欧美性受极品xxxx喷水| 亚洲欧洲av色图| 成人午夜精品在线| 久久久美女毛片| 精品一区二区免费视频| 欧美一级生活片| 午夜久久福利影院| 欧美优质美女网站| 亚洲人成在线观看一区二区| 成人av在线资源| 国产亚洲一区二区在线观看| 久久不见久久见免费视频1| 在线播放中文字幕一区| 亚洲成人动漫精品| 欧美色图在线观看| 一区二区三区国产| 日本久久一区二区| 亚洲精品videosex极品| 色偷偷久久一区二区三区| ...中文天堂在线一区| av在线不卡网| 最新日韩在线视频| av毛片久久久久**hd| 国产精品视频九色porn| 丰满岳乱妇一区二区三区| 久久久久久亚洲综合| 国产米奇在线777精品观看| 欧美变态凌虐bdsm| 国产在线不卡一区| 亚洲国产成人tv| 欧美绝品在线观看成人午夜影视| 亚洲成人动漫精品| 91精品久久久久久久91蜜桃| 青青草国产精品97视觉盛宴| 正在播放亚洲一区| 美腿丝袜亚洲一区| 久久品道一品道久久精品| 国产黑丝在线一区二区三区| 欧美国产一区视频在线观看| 福利一区二区在线观看| 综合亚洲深深色噜噜狠狠网站| 99re在线精品| 亚洲成人黄色影院| 日韩欧美中文一区二区| 久久爱www久久做| 国产日产精品1区| 成人av电影观看| 一区二区三区毛片| 91精品国产欧美一区二区成人 | 久久免费美女视频| 成人av电影在线网| 亚洲一区精品在线| 日韩一级大片在线| 国产精品99久久久久久似苏梦涵| 亚洲国产精品ⅴa在线观看| 一本久道中文字幕精品亚洲嫩| 亚洲午夜久久久久久久久电影网| 欧美一区二区三区四区视频| 国产精品一二三区在线| 亚洲欧美日韩在线播放| 欧美高清视频一二三区 | 国产女人18水真多18精品一级做| 成人免费看视频| 亚洲18色成人| 久久综合999| 91成人免费在线视频| 免费在线观看成人| 国产精品毛片久久久久久久| 欧美亚洲愉拍一区二区| 精品制服美女久久| 国产精品国产自产拍在线| 欧美剧情片在线观看| 国产**成人网毛片九色| 亚洲一区二区视频在线观看| 欧美变态tickling挠脚心| 成人av综合在线| 日韩专区欧美专区| 国产精品久久久久影院老司| 91精品国产一区二区| av亚洲精华国产精华精| 日本欧美大码aⅴ在线播放| 国产精品网站在线| 日韩视频123| 99视频国产精品| 久久精品999| 亚洲黄色尤物视频| 久久精品一级爱片| 欧美日本韩国一区二区三区视频| 成人永久aaa| 裸体健美xxxx欧美裸体表演| 亚洲男人的天堂在线aⅴ视频| 精品裸体舞一区二区三区| 欧美网站一区二区| 成人激情小说网站| 极品美女销魂一区二区三区免费| 亚洲欧美日韩综合aⅴ视频| 久久久午夜精品| 91精品一区二区三区久久久久久| av中文字幕在线不卡| 极品少妇xxxx精品少妇偷拍| 午夜天堂影视香蕉久久| 《视频一区视频二区| 久久久国产精华| 日韩欧美激情一区| 欧美日韩国产小视频| 99久久精品国产一区| 国产一区二区福利视频| 日本不卡123| 亚洲福利视频三区| 亚洲另类在线视频| 中文字幕视频一区二区三区久| 亚洲国产精品一区二区久久恐怖片| 国产精品久久久久久久久久久免费看 | wwwwxxxxx欧美| 在线电影一区二区三区| 91福利在线导航| 色综合网色综合| 不卡av免费在线观看| 国产九色精品成人porny| 蜜臀久久久久久久| 亚洲mv大片欧洲mv大片精品| 亚洲美女免费在线| 1024国产精品| 亚洲色图制服丝袜| 中文字幕一区二区三区四区不卡 | voyeur盗摄精品| 粉嫩蜜臀av国产精品网站| 国产精品一区二区x88av| 久久av中文字幕片| 蜜桃一区二区三区在线| 奇米影视一区二区三区小说| 日韩和欧美一区二区三区| 午夜精品一区二区三区免费视频 | 在线播放91灌醉迷j高跟美女| 欧美色爱综合网| 欧美日韩一区二区在线观看 | 免费人成网站在线观看欧美高清| 日韩经典中文字幕一区| 免费人成黄页网站在线一区二区| 天天做天天摸天天爽国产一区| 亚洲超碰精品一区二区| 同产精品九九九| 奇米精品一区二区三区在线观看 | 国产欧美日本一区二区三区| 国产丝袜美腿一区二区三区| 日本一二三四高清不卡| 国产精品久久久久影院亚瑟| 中文字幕亚洲视频| 亚洲免费观看高清| 亚洲va天堂va国产va久| 日韩电影在线免费观看| 久久精品国产免费看久久精品| 久久99精品国产.久久久久| 国产精品资源站在线| www.亚洲在线| 欧美色图12p| 日韩一级片在线观看| 国产午夜精品久久| 亚洲六月丁香色婷婷综合久久|