亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? faq.html

?? 使用svm實現(xiàn)了分類和擬合功能 帶有源文件
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Thu, 18 Sep 2008 14:35:56 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(69)</li>
<ul><b>
<li><a
href="#/Q1:_Some_sample_uses_of_libsvm">Q1:_Some_sample_uses_of_libsvm</a>(2)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(9)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(6)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(32)</li>
<li><a
href="#/Q5:_Probability_outputs">Q5:_Probability_outputs</a>(3)</li>
<li><a
href="#/Q6:_Graphic_interface">Q6:_Graphic_interface</a>(3)</li>
<li><a
href="#/Q7:_Java_version_of_libsvm">Q7:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q8:_Python_interface">Q8:_Python_interface</a>(5)</li>
<li><a
href="#/Q9:_MATLAB_interface">Q9:_MATLAB_interface</a>(5)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq101">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#faq102">Some applications which have used libsvm </a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">Where are change log and earlier versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f209">What is the difference beween "." and "*" outputed during training? </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f304">Why sometimes the last line of my data is not read by svm-train?</a></li>
<li class="headlines_item"><a href="#f305">Is there a program to check if my data are in the correct format?</a></li>
<li class="headlines_item"><a href="#f306">May I put comments in data files?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running (without showing any output). What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
<li class="headlines_item"><a href="#f416">On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f4201">Why my cross-validation results are different from those in the Practical Guide?</a></li>
<li class="headlines_item"><a href="#f421">But on some systems CV accuracy is the same in several runs. How could I use different data partitions?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
<li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
<li class="headlines_item"><a href="#f429">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
<li class="headlines_item"><a href="#f430">Why the sign of predicted labels and decision values are sometimes reversed?</a></li>
<li class="headlines_item"><a href="#f431">I don't know class labels of test data. What should I put in the first column of the test file?</a></li>
<li class="headlines_item"><a href="#f432">How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</a></li>
<li class="headlines_item"><a href="#f433">How could I know which training instances are support vectors?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes longer time</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f427">Why using svm-predict -b 0 and -b 1 gives different accuracy values?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">On MS windows, why does python fail to load the pyd file?</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the .pyd file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
<li class="headlines_item"><a href="#f706">I typed "make" on a unix system, but it says "Python.h: No such file or directory?"</a></li>
<li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
<li class="headlines_item"><a href="#f802">Does the MATLAB interface provide a function to do scaling?</a></li>
<li class="headlines_item"><a href="#f803">How could I use MATLAB interface for parameter selection?</a></li>
<li class="headlines_item"><a href="#f804">How could I generate the primal variable w of linear SVM?</a></li>
<li class="headlines_item"><a href="#f805">Is there an OCTAVE interface for libsvm?</a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_sample_uses_of_libsvm"></a>
<a name="faq101"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
<li>
<a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
SVM tutorial in machine learning
summer school, University of Chicago, 2005.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q1:_Some_sample_uses_of_libsvm"></a>
<a name="faq102"><b>Q: Some applications which have used libsvm </b></a>
<br/>                                                                                
<ul>
<li><a href=http://johel.m.free.fr/demo_045.htm>
Realtime object recognition</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: Where are change log and earlier versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f209"><b>Q: What is the difference beween "." and "*" outputed during training? </b></a>
<br/>                                                                                

<p>
"." means every 1,000 iterations (or every #data 
iterations is your #data is less than 1,000).
"*" means that the shrunken problem has
satisfied the stopping condition, and
we reset to use the whole set. See the 
<a href=../papers/libsvm.pdf>implementation document</a> for details.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f304"><b>Q: Why sometimes the last line of my data is not read by svm-train?</b></a>
<br/>                                                                                

<p>
We assume that you have '\n' in the end of
each line. So please press enter in the end
of your last line.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f305"><b>Q: Is there a program to check if my data are in the correct format?</b></a>
<br/>                                                                                

<p>
The svm-train program in libsvm conducts only a simple check of the input data. To do a
detailed check, after libsvm 2.85, you can use the python script tools/checkdata.py. See tools/README for details.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f306"><b>Q: May I put comments in data files?</b></a>
<br/>                                                                                

<p>
No, for simplicity we don't support that.
However, you can easily preprocess your data before
using libsvm. For example,
if you have the following data
<pre>
test.txt
1 1:2 2:1 # proten A
</pre>
then on unix machines you can do
<pre>
cut -d '#' -f 1 < test.txt > test.features
cut -d '#' -f 2 < test.txt > test.comments

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
韩国成人在线视频| 一区二区三区在线免费观看| 日本一不卡视频| 欧美成人艳星乳罩| 国产一区二区在线影院| 国产三级精品三级| 成人午夜精品一区二区三区| 亚洲视频综合在线| 欧美最猛性xxxxx直播| 偷窥国产亚洲免费视频 | 成人高清av在线| 中文字幕欧美区| gogo大胆日本视频一区| 亚洲人成在线播放网站岛国| 在线免费观看视频一区| 蜜桃av一区二区| 中文字幕欧美激情一区| 91老司机福利 在线| 日韩高清不卡一区| 国产日韩视频一区二区三区| 色香色香欲天天天影视综合网| 亚洲一二三四久久| 日韩欧美一二三| 不卡视频一二三| 午夜久久久影院| 欧美激情综合五月色丁香| 91官网在线观看| 国产真实精品久久二三区| 亚洲视频在线一区二区| 91精品国产91久久综合桃花 | 色嗨嗨av一区二区三区| 美国毛片一区二区三区| 国产精品毛片大码女人| 欧美精品成人一区二区三区四区| 国产福利一区二区三区视频| 亚洲一二三四在线| 国产日本亚洲高清| 7777精品伊人久久久大香线蕉| 国产精品 欧美精品| 亚洲午夜激情网站| 亚洲国产激情av| 欧美一区二区三区不卡| 91丨porny丨国产| 国产一区91精品张津瑜| 国产成人av福利| 午夜激情久久久| 国产精品传媒在线| 日韩免费视频一区| 欧美在线观看视频一区二区 | 亚洲主播在线播放| 久久久五月婷婷| 56国语精品自产拍在线观看| 色综合久久久久久久| 国产最新精品免费| 日韩二区三区在线观看| 亚洲欧美日韩一区二区三区在线观看| 精品久久人人做人人爱| 欧美视频一区二区在线观看| 成人app软件下载大全免费| 久久99国产乱子伦精品免费| 水野朝阳av一区二区三区| 亚洲人成人一区二区在线观看| 久久久一区二区三区捆绑**| 日韩一区二区电影网| 欧美羞羞免费网站| 成人高清免费在线播放| 国产高清一区日本| 狠狠色丁香婷婷综合久久片| 久久国产综合精品| 日本午夜精品一区二区三区电影| 同产精品九九九| 视频在线在亚洲| 婷婷国产在线综合| 亚洲国产成人高清精品| 国产酒店精品激情| 极品少妇一区二区三区精品视频 | 精品黑人一区二区三区久久| 欧美日韩一级视频| 欧美群妇大交群的观看方式 | 欧美一区二区视频在线观看| 欧美丰满一区二区免费视频| 欧美浪妇xxxx高跟鞋交| 欧美剧在线免费观看网站| 欧美精品日韩一区| 91精品婷婷国产综合久久性色 | 亚洲精品欧美激情| 樱桃国产成人精品视频| 亚洲高清一区二区三区| 亚洲综合精品自拍| 一区二区三区精品视频| 亚洲成精国产精品女| 日韩专区中文字幕一区二区| 久久99精品久久久久久| 国产成人日日夜夜| 成人一区二区三区视频在线观看 | 国产高清亚洲一区| 91小视频在线| 欧美精品一二三四| 精品国产乱码久久久久久夜甘婷婷 | 蜜乳av一区二区三区| 国产精品一区二区在线看| 成人av综合在线| 欧美a级理论片| 国产一区二区三区美女| 不卡一卡二卡三乱码免费网站 | 欧美裸体bbwbbwbbw| 久久青草欧美一区二区三区| 亚洲四区在线观看| 日本特黄久久久高潮| 国产黄色精品视频| 日本精品一区二区三区高清 | 欧美经典一区二区| 亚洲综合免费观看高清完整版 | 日本电影亚洲天堂一区| 91麻豆精品91久久久久同性| 中文在线一区二区| 午夜精品一区在线观看| 国产美女精品一区二区三区| 欧洲av在线精品| 久久精品亚洲精品国产欧美| 一区二区三区在线不卡| 精品亚洲国产成人av制服丝袜| 91精品国产一区二区三区香蕉| 久久这里只有精品视频网| 国产精品国产自产拍在线| 日本成人在线网站| 91亚洲精品一区二区乱码| 精品国产乱子伦一区| 亚洲国产综合色| 高清国产一区二区| 欧美一区二区三区在| 中文字幕一区日韩精品欧美| 裸体在线国模精品偷拍| 欧美亚洲国产怡红院影院| 久久久久久久一区| 日韩电影在线一区二区| 欧美亚洲动漫另类| 国产欧美日韩激情| 日韩av中文在线观看| 在线视频你懂得一区二区三区| 国产午夜亚洲精品午夜鲁丝片| 午夜一区二区三区在线观看| 97精品久久久午夜一区二区三区| 精品国产凹凸成av人网站| 午夜精品福利久久久| 91碰在线视频| 国产欧美精品区一区二区三区| 久久国产麻豆精品| 欧美日韩成人在线一区| 亚洲国产一区二区三区青草影视| 成人午夜视频免费看| 国产亚洲综合色| 麻豆91精品91久久久的内涵| 7777女厕盗摄久久久| 亚洲在线观看免费视频| 91麻豆swag| 18成人在线视频| 9l国产精品久久久久麻豆| 国产日韩欧美综合一区| 国产综合久久久久久久久久久久| 欧美一级视频精品观看| 日本美女视频一区二区| 91精品蜜臀在线一区尤物| 五月天久久比比资源色| 欧美久久久久久蜜桃| 亚洲成人av一区二区三区| 欧美天堂亚洲电影院在线播放| 亚洲欧洲制服丝袜| 91视频免费播放| 亚洲免费观看高清在线观看| 日本丶国产丶欧美色综合| 亚洲另类中文字| 色视频成人在线观看免| 亚洲一二三四在线| 8x福利精品第一导航| 男女性色大片免费观看一区二区| 9191成人精品久久| 精品在线观看视频| 久久久天堂av| 成人小视频在线| 亚洲人成小说网站色在线| 欧美性一二三区| 偷拍亚洲欧洲综合| xnxx国产精品| 91视频免费看| 日本中文一区二区三区| 久久夜色精品国产噜噜av| 成人午夜在线视频| 一区二区三区丝袜| 69堂国产成人免费视频| 国产一区二区在线电影| 国产精品拍天天在线| 欧美综合久久久| 看国产成人h片视频| 亚洲国产精品国自产拍av| 在线观看www91| 国内成人免费视频| 日韩美女精品在线| 91精品国产免费| 99re这里只有精品视频首页|