亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? svm.m4

?? 使用svm實現了分類和擬合功能 帶有源文件
?? M4
?? 第 1 頁 / 共 4 頁
字號:
			int[] nz_start = new int[nr_class];			nz_start[0] = 0;			for(i=1;i<nr_class;i++)				nz_start[i] = nz_start[i-1]+nz_count[i-1];			model.sv_coef = new double[nr_class-1][];			for(i=0;i<nr_class-1;i++)				model.sv_coef[i] = new double[nnz];			p = 0;			for(i=0;i<nr_class;i++)				for(int j=i+1;j<nr_class;j++)				{					// classifier (i,j): coefficients with					// i are in sv_coef[j-1][nz_start[i]...],					// j are in sv_coef[i][nz_start[j]...]					int si = start[i];					int sj = start[j];					int ci = count[i];					int cj = count[j];					int q = nz_start[i];					int k;					for(k=0;k<ci;k++)						if(nonzero[si+k])							model.sv_coef[j-1][q++] = f[p].alpha[k];					q = nz_start[j];					for(k=0;k<cj;k++)						if(nonzero[sj+k])							model.sv_coef[i][q++] = f[p].alpha[ci+k];					++p;				}		}		return model;	}		// Stratified cross validation	public static void svm_cross_validation(svm_problem prob, svm_parameter param, int nr_fold, double[] target)	{		int i;		int[] fold_start = new int[nr_fold+1];		int l = prob.l;		int[] perm = new int[l];				// stratified cv may not give leave-one-out rate		// Each class to l folds -> some folds may have zero elements		if((param.svm_type == svm_parameter.C_SVC ||		    param.svm_type == svm_parameter.NU_SVC) && nr_fold < l)		{			int[] tmp_nr_class = new int[1];			int[][] tmp_label = new int[1][];			int[][] tmp_start = new int[1][];			int[][] tmp_count = new int[1][];			svm_group_classes(prob,tmp_nr_class,tmp_label,tmp_start,tmp_count,perm);			int nr_class = tmp_nr_class[0];			int[] label = tmp_label[0];			int[] start = tmp_start[0];			int[] count = tmp_count[0]; 					// random shuffle and then data grouped by fold using the array perm			int[] fold_count = new int[nr_fold];			int c;			int[] index = new int[l];			for(i=0;i<l;i++)				index[i]=perm[i];			for (c=0; c<nr_class; c++)				for(i=0;i<count[c];i++)				{					int j = i+(int)(Math.random()*(count[c]-i));					swap(int,index[start[c]+j],index[start[c]+i]);				}			for(i=0;i<nr_fold;i++)			{				fold_count[i] = 0;				for (c=0; c<nr_class;c++)					fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;			}			fold_start[0]=0;			for (i=1;i<=nr_fold;i++)				fold_start[i] = fold_start[i-1]+fold_count[i-1];			for (c=0; c<nr_class;c++)				for(i=0;i<nr_fold;i++)				{					int begin = start[c]+i*count[c]/nr_fold;					int end = start[c]+(i+1)*count[c]/nr_fold;					for(int j=begin;j<end;j++)					{						perm[fold_start[i]] = index[j];						fold_start[i]++;					}				}			fold_start[0]=0;			for (i=1;i<=nr_fold;i++)				fold_start[i] = fold_start[i-1]+fold_count[i-1];		}		else		{			for(i=0;i<l;i++) perm[i]=i;			for(i=0;i<l;i++)			{				int j = i+(int)(Math.random()*(l-i));				swap(int,perm[i],perm[j]);			}			for(i=0;i<=nr_fold;i++)				fold_start[i]=i*l/nr_fold;		}		for(i=0;i<nr_fold;i++)		{			int begin = fold_start[i];			int end = fold_start[i+1];			int j,k;			svm_problem subprob = new svm_problem();			subprob.l = l-(end-begin);			subprob.x = new svm_node[subprob.l][];			subprob.y = new double[subprob.l];			k=0;			for(j=0;j<begin;j++)			{				subprob.x[k] = prob.x[perm[j]];				subprob.y[k] = prob.y[perm[j]];				++k;			}			for(j=end;j<l;j++)			{				subprob.x[k] = prob.x[perm[j]];				subprob.y[k] = prob.y[perm[j]];				++k;			}			svm_model submodel = svm_train(subprob,param);			if(param.probability==1 &&			   (param.svm_type == svm_parameter.C_SVC ||			    param.svm_type == svm_parameter.NU_SVC))			{				double[] prob_estimates= new double[svm_get_nr_class(submodel)];				for(j=begin;j<end;j++)					target[perm[j]] = svm_predict_probability(submodel,prob.x[perm[j]],prob_estimates);			}			else				for(j=begin;j<end;j++)					target[perm[j]] = svm_predict(submodel,prob.x[perm[j]]);		}	}	public static int svm_get_svm_type(svm_model model)	{		return model.param.svm_type;	}	public static int svm_get_nr_class(svm_model model)	{		return model.nr_class;	}	public static void svm_get_labels(svm_model model, int[] label)	{		if (model.label != null)			for(int i=0;i<model.nr_class;i++)				label[i] = model.label[i];	}	public static double svm_get_svr_probability(svm_model model)	{		if ((model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) &&		    model.probA!=null)		return model.probA[0];		else		{			System.err.print("Model doesn't contain information for SVR probability inference\n");			return 0;		}	}	public static void svm_predict_values(svm_model model, svm_node[] x, double[] dec_values)	{		if(model.param.svm_type == svm_parameter.ONE_CLASS ||		   model.param.svm_type == svm_parameter.EPSILON_SVR ||		   model.param.svm_type == svm_parameter.NU_SVR)		{			double[] sv_coef = model.sv_coef[0];			double sum = 0;			for(int i=0;i<model.l;i++)				sum += sv_coef[i] * Kernel.k_function(x,model.SV[i],model.param);			sum -= model.rho[0];			dec_values[0] = sum;		}		else		{			int i;			int nr_class = model.nr_class;			int l = model.l;					double[] kvalue = new double[l];			for(i=0;i<l;i++)				kvalue[i] = Kernel.k_function(x,model.SV[i],model.param);			int[] start = new int[nr_class];			start[0] = 0;			for(i=1;i<nr_class;i++)				start[i] = start[i-1]+model.nSV[i-1];			int p=0;			for(i=0;i<nr_class;i++)				for(int j=i+1;j<nr_class;j++)				{					double sum = 0;					int si = start[i];					int sj = start[j];					int ci = model.nSV[i];					int cj = model.nSV[j];									int k;					double[] coef1 = model.sv_coef[j-1];					double[] coef2 = model.sv_coef[i];					for(k=0;k<ci;k++)						sum += coef1[si+k] * kvalue[si+k];					for(k=0;k<cj;k++)						sum += coef2[sj+k] * kvalue[sj+k];					sum -= model.rho[p];					dec_values[p] = sum;										p++;				}		}	}	public static double svm_predict(svm_model model, svm_node[] x)	{		if(model.param.svm_type == svm_parameter.ONE_CLASS ||		   model.param.svm_type == svm_parameter.EPSILON_SVR ||		   model.param.svm_type == svm_parameter.NU_SVR)		{			double[] res = new double[1];			svm_predict_values(model, x, res);			if(model.param.svm_type == svm_parameter.ONE_CLASS)				return (res[0]>0)?1:-1;			else				return res[0];		}		else		{			int i;			int nr_class = model.nr_class;			double[] dec_values = new double[nr_class*(nr_class-1)/2];			svm_predict_values(model, x, dec_values);			int[] vote = new int[nr_class];			for(i=0;i<nr_class;i++)				vote[i] = 0;			int pos=0;			for(i=0;i<nr_class;i++)				for(int j=i+1;j<nr_class;j++)				{					if(dec_values[pos++] > 0)						++vote[i];					else						++vote[j];				}			int vote_max_idx = 0;			for(i=1;i<nr_class;i++)				if(vote[i] > vote[vote_max_idx])					vote_max_idx = i;			return model.label[vote_max_idx];		}	}	public static double svm_predict_probability(svm_model model, svm_node[] x, double[] prob_estimates)	{		if ((model.param.svm_type == svm_parameter.C_SVC || model.param.svm_type == svm_parameter.NU_SVC) &&		    model.probA!=null && model.probB!=null)		{			int i;			int nr_class = model.nr_class;			double[] dec_values = new double[nr_class*(nr_class-1)/2];			svm_predict_values(model, x, dec_values);			double min_prob=1e-7;			double[][] pairwise_prob=new double[nr_class][nr_class];						int k=0;			for(i=0;i<nr_class;i++)				for(int j=i+1;j<nr_class;j++)				{					pairwise_prob[i][j]=Math.min(Math.max(sigmoid_predict(dec_values[k],model.probA[k],model.probB[k]),min_prob),1-min_prob);					pairwise_prob[j][i]=1-pairwise_prob[i][j];					k++;				}			multiclass_probability(nr_class,pairwise_prob,prob_estimates);			int prob_max_idx = 0;			for(i=1;i<nr_class;i++)				if(prob_estimates[i] > prob_estimates[prob_max_idx])					prob_max_idx = i;			return model.label[prob_max_idx];		}		else 			return svm_predict(model, x);	}	static final String svm_type_table[] =	{		"c_svc","nu_svc","one_class","epsilon_svr","nu_svr",	};	static final String kernel_type_table[]=	{		"linear","polynomial","rbf","sigmoid","precomputed"	};	public static void svm_save_model(String model_file_name, svm_model model) throws IOException	{		DataOutputStream fp = new DataOutputStream(new FileOutputStream(model_file_name));		svm_parameter param = model.param;		fp.writeBytes("svm_type "+svm_type_table[param.svm_type]+"\n");		fp.writeBytes("kernel_type "+kernel_type_table[param.kernel_type]+"\n");		if(param.kernel_type == svm_parameter.POLY)			fp.writeBytes("degree "+param.degree+"\n");		if(param.kernel_type == svm_parameter.POLY ||		   param.kernel_type == svm_parameter.RBF ||		   param.kernel_type == svm_parameter.SIGMOID)			fp.writeBytes("gamma "+param.gamma+"\n");		if(param.kernel_type == svm_parameter.POLY ||		   param.kernel_type == svm_parameter.SIGMOID)			fp.writeBytes("coef0 "+param.coef0+"\n");		int nr_class = model.nr_class;		int l = model.l;		fp.writeBytes("nr_class "+nr_class+"\n");		fp.writeBytes("total_sv "+l+"\n");			{			fp.writeBytes("rho");			for(int i=0;i<nr_class*(nr_class-1)/2;i++)				fp.writeBytes(" "+model.rho[i]);			fp.writeBytes("\n");		}			if(model.label != null)		{			fp.writeBytes("label");			for(int i=0;i<nr_class;i++)				fp.writeBytes(" "+model.label[i]);			fp.writeBytes("\n");		}		if(model.probA != null) // regression has probA only		{			fp.writeBytes("probA");			for(int i=0;i<nr_class*(nr_class-1)/2;i++)				fp.writeBytes(" "+model.probA[i]);			fp.writeBytes("\n");		}		if(model.probB != null) 		{			fp.writeBytes("probB");			for(int i=0;i<nr_class*(nr_class-1)/2;i++)				fp.writeBytes(" "+model.probB[i]);			fp.writeBytes("\n");		}		if(model.nSV != null)		{			fp.writeBytes("nr_sv");			for(int i=0;i<nr_class;i++)				fp.writeBytes(" "+model.nSV[i]);			fp.writeBytes("\n");		}		fp.writeBytes("SV\n");		double[][] sv_coef = model.sv_coef;		svm_node[][] SV = model.SV;		for(int i=0;i<l;i++)		{			for(int j=0;j<nr_class-1;j++)				fp.writeBytes(sv_coef[j][i]+" ");			svm_node[] p = SV[i];			if(param.kernel_type == svm_parameter.PRECOMPUTED)				fp.writeBytes("0:"+(int)(p[0].value));			else					for(int j=0;j<p.length;j++)					fp.writeBytes(p[j].index+":"+p[j].value+" ");			fp.writeBytes("\n");		}		fp.close();	}	private static double atof(String s)	{		return Double.valueOf(s).doubleValue();	}	private static int atoi(String s)	{		return Integer.parseInt(s);	}	public static svm_model svm_load_model(String model_file_name) throws IOException	{		BufferedReader fp = new BufferedReader(new FileReader(model_file_name));		// read parameters		svm_model model = new svm_model();		svm_parameter param = new svm_parameter();		model.param = param;		model.rho = null;		model.probA = null;		model.probB = null;		model.label = null;		model.nSV = null;		while(true)		{			String cmd = fp.readLine();			String arg = cmd.substring(cmd.indexOf(' ')+1);			if(cmd.startsWith("svm_type"))			{				int i;				for(i=0;i<svm_type_table.length;i++)				{					if(arg.indexOf(svm_type_table[i])!=-1)					{						param.svm_type=i;						break;					}				}				if(i == svm_type_table.length)				{					System.err.print("unknown svm type.\n");					return null;				}			}			else if(cmd.startsWith("kernel_type"))			{				int i;				for(i=0;i<kernel_type_table.length;i++)				{					if(arg.indexOf(kernel_type_table[i])!=-1)					{						param.kernel_type=i;						break;					}				}				if(i == kernel_type_table.length)				{					System.err.print("unknown kernel function.\n");					return null;				}			}			else if(cmd.startsWith("degree"))				param.degree = atoi(arg);			else if(cmd.startsWith("gamma"))				param.gamma = atof(arg);			else if(cmd.startsWith("coef0"))				param.coef0 = atof(arg);			else if(cmd.startsWith("nr_class"))				model.nr_class = atoi(arg);			else if(cmd.startsWith("total_sv"))				model.l = atoi(arg);			else if(cmd.startsWith("rho"))			{				int n = model.nr_class * (model.nr_class-1)/2;				model.rho = new double[n];				StringTokenizer st = new StringTokenizer(arg);				for(int i=0;i<n;i++)					model.rho[i] = atof(st.nextToken());			}			else if(cmd.startsWith("label"))			{				int n = model.nr_class;				model.label = new int[n];				StringTokenizer st = new StringTokenizer(arg);				for(int i=0;i<n;i++)					model.label[i] = atoi(st.nextToken());								}			else if(cmd.startsWith("probA"))			{				int n = model.nr_class*(model.nr_class-1)/2;				model.probA = new double[n];				StringTokenizer st = new StringTokenizer(arg);				for(int i=0;i<n;i++)					model.probA[i] = atof(st.nextToken());								}			else if(cmd.startsWith("probB"))			{				int n = model.nr_class*(model.nr_class-1)/2;				model.probB = new double[n];				StringTokenizer st = new StringTokenizer(arg);				for(int i=0;i<n;i++)					model.probB[i] = atof(st.nextToken());								}			else if(cmd.startsWith("nr_sv"))			{				int n = model.nr_class;				model.nSV = new int[n];				StringTokenizer st = new StringTokenizer(arg);				for(int i=0;i<n;i++)					model.nSV[i] = atoi(st.nextToken());			}			else if(cmd.startsWith("SV"))			{				break;			}			else			{				System.err.print("unknown text in model file: ["+cmd+"]\n");				return null;			}		}		// read sv_coef and SV		int m = model.nr_class - 1;		int l = model.l;		model.sv_coef = new double[m][l];		model.SV = new svm_node[l][];		for(int i=0;i<l;i++)		{			String line = fp.readLine();			StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");			for(int k=0;k<m;k++)				model.sv_coef[k][i] = atof(st.nextToken());			int n = st.countTokens()/2;			model.SV[i] = new svm_node[n];			for(int j=0;j<n;j++)			{				model.SV[i][j] = new svm_node();				model.SV[i][j].index = atoi(st.nextToken());				model.SV[i][j].value = atof(st.nextToken());			}		}		fp.close();		return model;	}	public static String svm_check_parameter(svm_problem prob, svm_parameter param)	{		// svm_type		int svm_type = param.svm_type;		if(svm_type != svm_parameter.C_SVC &&		   svm_type != svm_parameter.NU_SVC &&		   svm_type != svm_parameter.ONE_CLASS &&		   svm_type != svm_parameter.EPSILON_SVR &&		   svm_type != svm_parameter.NU_SVR)		return "unknown svm type";		// kernel_type, degree			int kernel_type = param.kernel_type;		if(kernel_type != svm_parameter.LINEAR &&		   kernel_type != svm_parameter.POLY &&		   kernel_type != svm_parameter.RBF &&		   kernel_type != svm_parameter.SIGMOID &&		   kernel_type != svm_parameter.PRECOMPUTED)			return "unknown kernel type";		if(param.degree < 0)			return "degree of polynomial kernel < 0";		// cache_size,eps,C,nu,p,shrinking		if(param.cache_size <= 0)			return "cache_size <= 0";		if(param.eps <= 0)			return "eps <= 0";		if(svm_type == svm_parameter.C_SVC ||		   svm_type == svm_parameter.EPSILON_SVR ||		   svm_type == svm_parameter.NU_SVR)			if(param.C <= 0)				return "C <= 0";		if(svm_type == svm_parameter.NU_SVC ||		   svm_type == svm_parameter.ONE_CLASS ||		   svm_type == svm_parameter.NU_SVR)			if(param.nu <= 0 || param.nu > 1)				return "nu <= 0 or nu > 1";		if(svm_type == svm_parameter.EPSILON_SVR)			if(param.p < 0)				return "p < 0";		if(param.shrinking != 0 &&		   param.shrinking != 1)			return "shrinking != 0 and shrinking != 1";		if(param.probability != 0 &&		   param.probability != 1)			return "probability != 0 and probability != 1";		if(param.probability == 1 &&		   svm_type == svm_parameter.ONE_CLASS)			return "one-class SVM probability output not supported yet";				// check whether nu-svc is feasible			if(svm_type == svm_parameter.NU_SVC)		{			int l = prob.l;			int max_nr_class = 16;			int nr_class = 0;			int[] label = new int[max_nr_class];			int[] count = new int[max_nr_class];			int i;			for(i=0;i<l;i++)			{				int this_label = (int)prob.y[i];				int j;				for(j=0;j<nr_class;j++)					if(this_label == label[j])					{						++count[j];						break;					}				if(j == nr_class)				{					if(nr_class == max_nr_class)					{						max_nr_class *= 2;						int[] new_data = new int[max_nr_class];						System.arraycopy(label,0,new_data,0,label.length);						label = new_data;												new_data = new int[max_nr_class];						System.arraycopy(count,0,new_data,0,count.length);						count = new_data;					}					label[nr_class] = this_label;					count[nr_class] = 1;					++nr_class;				}			}			for(i=0;i<nr_class;i++)			{				int n1 = count[i];				for(int j=i+1;j<nr_class;j++)				{					int n2 = count[j];					if(param.nu*(n1+n2)/2 > Math.min(n1,n2))						return "specified nu is infeasible";				}			}		}		return null;	}	public static int svm_check_probability_model(svm_model model)	{		if (((model.param.svm_type == svm_parameter.C_SVC || model.param.svm_type == svm_parameter.NU_SVC) &&		model.probA!=null && model.probB!=null) ||		((model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) &&		 model.probA!=null))			return 1;		else			return 0;	}}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩欧美国产成人一区二区| 91一区二区在线| 91精品国产一区二区三区| 亚洲国产成人av好男人在线观看| 色偷偷成人一区二区三区91| 亚洲国产综合色| 日韩视频中午一区| 国产一区二区美女| 中文字幕巨乱亚洲| 91丨九色丨黑人外教| 亚洲高清在线精品| 日韩欧美国产高清| 波多野结衣中文字幕一区| 伊人夜夜躁av伊人久久| 欧美日韩国产不卡| 久草热8精品视频在线观看| 国产色爱av资源综合区| 91色porny在线视频| 午夜影视日本亚洲欧洲精品| 欧美va亚洲va在线观看蝴蝶网| 懂色av中文一区二区三区| 一级中文字幕一区二区| 精品久久久久久最新网址| 成年人午夜久久久| 毛片一区二区三区| 国产精品久久久久久久裸模| 91麻豆精品国产无毒不卡在线观看| 精品一区二区国语对白| 亚洲天堂中文字幕| 日韩欧美一卡二卡| 色吊一区二区三区| 久久99国内精品| 亚洲精品久久久久久国产精华液| 日韩欧美国产高清| 色天使久久综合网天天| 国产激情视频一区二区三区欧美| 亚洲品质自拍视频网站| 日韩欧美国产三级| 欧美午夜电影一区| 成人午夜免费av| 美女看a上一区| 亚洲综合激情网| 欧美国产精品中文字幕| 91精品蜜臀在线一区尤物| 99久久久久免费精品国产| 久久99精品一区二区三区三区| 樱花影视一区二区| 国产精品免费aⅴ片在线观看| 欧美剧在线免费观看网站| 99久久综合精品| 国产精品正在播放| 免费在线观看日韩欧美| 亚洲精品欧美专区| 欧美极品美女视频| www激情久久| 欧美放荡的少妇| 欧美少妇bbb| 91丝袜高跟美女视频| 成人高清视频在线观看| 精品在线一区二区| 青青草97国产精品免费观看无弹窗版| 亚洲欧美另类久久久精品| 国产视频不卡一区| 久久久久国产免费免费| 精品国产乱码久久久久久蜜臀| 337p亚洲精品色噜噜噜| 欧美精品亚洲一区二区在线播放| 色婷婷久久久亚洲一区二区三区| k8久久久一区二区三区| 成人动漫精品一区二区| 国产成人免费9x9x人网站视频| 国产尤物一区二区在线| 久久激情五月婷婷| 天堂成人国产精品一区| 午夜欧美一区二区三区在线播放| 亚洲女子a中天字幕| 亚洲欧美日韩成人高清在线一区| 国产精品国产三级国产aⅴ无密码 国产精品国产三级国产aⅴ原创 | 亚洲人成网站影音先锋播放| 中文字幕成人在线观看| 日本一区二区视频在线观看| 久久九九久精品国产免费直播| 久久人人97超碰com| 亚洲精品在线观| 国产性色一区二区| 中文字幕av一区 二区| 国产免费成人在线视频| 国产精品日韩成人| 一级做a爱片久久| 首页国产欧美久久| 国内精品久久久久影院一蜜桃| 国产精品一区二区你懂的| 国产suv精品一区二区6| 成人小视频在线观看| av在线一区二区| 欧美在线视频你懂得| 337p亚洲精品色噜噜| 精品国产乱码久久| 国产三级精品在线| 最好看的中文字幕久久| 亚洲大片一区二区三区| 老鸭窝一区二区久久精品| 国产精品一二三四| 日本黄色一区二区| 91麻豆精品久久久久蜜臀| 久久久久国产精品人| 亚洲激情欧美激情| 九九**精品视频免费播放| 99久久精品情趣| 欧美片网站yy| 久久久三级国产网站| 亚洲男人电影天堂| 麻豆精品一二三| 成人动漫视频在线| 91精品国产全国免费观看| 亚洲国产精品99久久久久久久久| 一区二区不卡在线播放| 国产精品小仙女| 欧美午夜电影网| 中文字幕av免费专区久久| 亚洲高清免费观看| 成人激情午夜影院| 欧美一区二区大片| 亚洲人成精品久久久久久| 久久se精品一区精品二区| 91视视频在线直接观看在线看网页在线看 | 韩国一区二区在线观看| 色哟哟日韩精品| 久久久99精品免费观看| 亚洲一区二区美女| 成人av网站免费| 日韩欧美一级二级三级久久久| 亚洲激情五月婷婷| 成人性生交大片免费看在线播放| 制服丝袜中文字幕一区| 亚洲女同一区二区| 国产精品99久久久久| 欧美一区二区三区成人| 亚洲摸摸操操av| 成人免费毛片aaaaa**| 欧美一级xxx| 午夜亚洲福利老司机| av不卡免费在线观看| 国产日韩在线不卡| 久久精品国产一区二区三区免费看 | 日韩理论片一区二区| 韩国女主播成人在线观看| 欧美精品九九99久久| 亚洲乱码一区二区三区在线观看| 国产精品自拍av| 亚洲精品一区二区三区99| 日韩精品久久久久久| 欧洲精品在线观看| 国产精品福利影院| 福利91精品一区二区三区| 久久综合久久综合亚洲| 日韩电影免费在线看| 欧美日韩国产成人在线91| 亚洲精品国产无天堂网2021| 成人av动漫在线| 国产精品人成在线观看免费| 丁香另类激情小说| 国产精品素人视频| 成人av免费在线播放| 国产精品成人一区二区艾草 | 欧美性色欧美a在线播放| 亚洲视频一区在线观看| 91污在线观看| 日韩毛片一二三区| 91丝袜美腿高跟国产极品老师| 1000精品久久久久久久久| 不卡一二三区首页| 亚洲欧美怡红院| 97精品电影院| 亚洲精品国产成人久久av盗摄| 色综合视频一区二区三区高清| 日韩毛片精品高清免费| 色网站国产精品| 亚洲h在线观看| 欧美不卡一区二区三区四区| 激情亚洲综合在线| 日本一区二区视频在线| av不卡一区二区三区| 一区二区免费在线| 欧美精品成人一区二区三区四区| 欧美经典一区二区| 久久久国产午夜精品 | 9久草视频在线视频精品| 亚洲国产精品国自产拍av| 欧美一区二区三区四区五区 | 大桥未久av一区二区三区中文| 亚洲一区二区三区中文字幕在线| 欧美不卡123| 色8久久人人97超碰香蕉987| 久久精品国产秦先生| 亚洲一区二区成人在线观看| 中文字幕国产一区| 日韩一区二区在线观看视频| 91视频www| 成人av在线观|