?? linux.c
字號(hào):
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++ linux.c - this file has linux API native code ++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*//*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ macros ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/#define S1 signed char#define S2 signed short#define S4 signed long#define S8 signed long long #define U1 unsigned char#define U2 unsigned short#define U4 unsigned long#define U8 unsigned long long/* Use ANSI-754 standard for single and double precision floats single precision = 4 bytes double precision = 8 bytes*/#define F4 float#define F8 double/* platform-specific I/O ------------------------------------------*/#define PRINT_UREG(rstr,reg) printf("%-6s=%-21llu",rstr,reg)#define PRINT_SREG(rstr,reg) printf("%-6s=%-21lld",rstr,reg)#define PRINT_FREG(rstr,reg) printf("%-6s=%g",rstr,(F4)reg)#define PRINT_DREG(rstr,reg) printf("%-6s=%g",rstr,(F8)reg)#define pU1(arg) printf("%u",arg)#define pU2(arg) printf("%hu",arg)#define pU4(arg) printf("%lu",arg)#define pU8(arg) printf("%llu",arg)#define pS1(arg) printf("%d",arg)#define pS2(arg) printf("%hd",arg)#define pS4(arg) printf("%ld",arg)#define pS8(arg) printf("%lld",arg)#define PRINT_MEM(index) printf("RAM[%llu]=%u",index,RAM[index])#define rU8(arg) scanf("%llu",arg)#define fpU8(ptr,arg) fprintf(ptr,"%llu",arg)#define fpS8(ptr,arg) fprintf(ptr,"%lld",arg)/* macros below used during reformating ---------------------------*//* reverse the order of bytes within an array */U1 fb[8];#define FORMAT_WORD(arr,start) { fb[0]=arr[start+1];\ fb[1]=arr[start];\ arr[start]=fb[0];\ arr[start+1]=fb[1]; }#define FORMAT_DWORD(arr,start) { fb[0]=arr[start+3];\ fb[1]=arr[start+2];\ fb[2]=arr[start+1];\ fb[3]=arr[start];\ arr[start]=fb[0];\ arr[start+1]=fb[1];\ arr[start+2]=fb[2];\ arr[start+3]=fb[3]; }#define FORMAT_QWORD(arr,start){ fb[0]=arr[start+7];\ fb[1]=arr[start+6];\ fb[2]=arr[start+5];\ fb[3]=arr[start+4];\ fb[4]=arr[start+3];\ fb[5]=arr[start+2];\ fb[6]=arr[start+1];\ fb[7]=arr[start];\ arr[start]=fb[0];\ arr[start+1]=fb[1];\ arr[start+2]=fb[2];\ arr[start+3]=fb[3];\ arr[start+4]=fb[4];\ arr[start+5]=fb[5];\ arr[start+6]=fb[6];\ arr[start+7]=fb[7]; }/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ public prototypes ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/void checkEndian();void printBytes(U1 bytes[], int nbytes);void testConversion();U2 bytecodeToWord(U1 bytes[]);U4 bytecodeToDWord(U1 bytes[]);U8 bytecodeToQWord(U1 bytes[]);F4 bytecodeToFloat(U1 bytes[]);F8 bytecodeToDouble(U1 bytes[]);void wordToBytecode(U2 word, U1 arr[]);void dwordToBytecode(U4 dword, U1 arr[]);void qwordToBytecode(U8 qword, U1 arr[]);void floatToBytecode(F4 flt, U1 arr[]);void doubleToBytecode(F8 dbl, U1 arr[]);U4 getAvailableMemory();U4 getFileSize(char *name);void testNativeFunctions();/* added for assembler */U8 stringToU8(char *str);/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ definitions ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*//* Note: bytecode format for numbers must be platform neutral ... So we must agree on a convention ahead of time. Integers - Stored in big-endian ( high byte first ) order, AKA network order 0xDEED1234 = 0xDE 0xED 0x12 0x34 [0] [1] [2] [3] Floats - Stored using IEEE 754 format using big-endian order Intel floating-point values are little endian [0 --deciaml part -- 22][23 --exponent-- 30] [31=sign] byte[0] byte[4] [0 --decimal part -- 51][52 --exponent-- 62][63=sign] byte[0] byte[7] For both, you'll need to convert to and from big-endian NOTA BENE: should convert values once upon loading application, to avoid redundant computation at runtime*//*-----------------------------------------------------------------*//* This method checks the current platform's endianess big-endian higher-order bytes first ( are at lower mem ) little endian lower-order bytes first ( are at lower mem ) On Intel Hardware using NT 4.0 we get: value = 0xDEED1234 machine is LITTLE endian - LOWER order bytes come first here are the bytes [0]=0x34 [1]=0x12 [2]=0xED [3]=0xDE*/void checkEndian(){ int i=0xDEED1234; int j; unsigned char *buff; printf("value = %lx\n",i); buff = (unsigned char*)&i; if(buff[0]==0x34) { printf("machine is LITTLE endian - LOWER order bytes come first"); } else { printf("machine is BIG endian - HIGHER order bytes come first"); } printf("\nhere are the 4 bytes\n"); for(j=0;j<4;j++){ printf(" byte [%d]=%x ",j,buff[j]); } printf("\n"); return;}/*end checkEndian*//*-----------------------------------------------------------------*//* Routines below convert bytecode values to native Intel format*/U2 bytecodeToWord(U1 bytes[]){ U2 word; U1 *buffer; buffer = (U1*)&word; buffer[0] = bytes[1]; buffer[1] = bytes[0]; return(word);}/*end bytecodeToWord*/U4 bytecodeToDWord(U1 bytes[]){ U4 dword; U1 *buffer; buffer = (U1*)&dword; buffer[0] = bytes[3]; buffer[1] = bytes[2]; buffer[2] = bytes[1]; buffer[3] = bytes[0]; return(dword);}/*end bytecodeToDWord*/U8 bytecodeToQWord(U1 bytes[]){ U8 qword; U1 *buffer; buffer = (U1*)&qword; buffer[0] = bytes[7]; buffer[1] = bytes[6]; buffer[2] = bytes[5]; buffer[3] = bytes[4]; buffer[4] = bytes[3]; buffer[5] = bytes[2]; buffer[6] = bytes[1]; buffer[7] = bytes[0]; return(qword);}/*end bytecodeToQWord*/F4 bytecodeToFloat(U1 bytes[]){ F4 flt; U1 *buffer; buffer = (U1*)&flt; buffer[0] = bytes[3]; buffer[1] = bytes[2]; buffer[2] = bytes[1]; buffer[3] = bytes[0]; return(flt);}/*end bytecodeToFloat*/F8 bytecodeToDouble(U1 bytes[]){ F8 dbl; U1 *buffer; buffer = (U1*)&dbl; buffer[0] = bytes[7]; buffer[1] = bytes[6]; buffer[2] = bytes[5]; buffer[3] = bytes[4]; buffer[4] = bytes[3]; buffer[5] = bytes[2]; buffer[6] = bytes[1]; buffer[7] = bytes[0]; return(dbl);}/*end bytecodeToDouble*//*-----------------------------------------------------------------*//*Routines below convert Intel values to bytecode format*/void wordToBytecode(U2 word, U1 arr[]){ U1 *buffer; buffer = (U1*)&word; arr[0] = buffer[1]; arr[1] = buffer[0]; return;}/*end wordToBytecode*/void dwordToBytecode(U4 dword, U1 arr[]){ U1 *buffer; buffer = (U1*)&dword; arr[0] = buffer[3]; arr[1] = buffer[2]; arr[2] = buffer[1]; arr[3] = buffer[0]; return;}/*end dwordToBytecode*/void qwordToBytecode(U8 qword, U1 arr[]){ U1 *buffer; buffer = (U1*)&qword; arr[0] = buffer[7]; arr[1] = buffer[6]; arr[2] = buffer[5]; arr[3] = buffer[4]; arr[4] = buffer[3]; arr[5] = buffer[2]; arr[6] = buffer[1]; arr[7] = buffer[0]; return;}/*end qwordToBytecode*/void floatToBytecode(F4 flt, U1 arr[]){ U1 *buffer; buffer = (U1*)&flt; arr[0] = buffer[3]; arr[1] = buffer[2]; arr[2] = buffer[1]; arr[3] = buffer[0]; return;}/*end floatToBytecode*/void doubleToBytecode(F8 dbl, U1 arr[]){ U1 *buffer; buffer = (U1*)&dbl; arr[0] = buffer[7]; arr[1] = buffer[6]; arr[2] = buffer[5]; arr[3] = buffer[4]; arr[4] = buffer[3]; arr[5] = buffer[2]; arr[6] = buffer[1]; arr[7] = buffer[0]; return;}/*end doubleToBytecode*//*-----------------------------------------------------------------*//* this prints out the bytes of a datatype*/void printBytes(U1 bytes[], int nbytes){ int i; for(i=0; i<nbytes; i++){ printf("byte[%u]=%X ",i,(U1)bytes[i]); } printf("\n"); return;}/*end printBytes*//*-----------------------------------------------------------------*//* Test native->bytecode and bytecode->native conversion Take a value i) print out the value ii) print out the byte pattern iii) convert to bytecode and print byte pattern iv) convert back to native and print out byte pattern v) print out the value ( should match that from i) )*/void testConversion(){ S2 w; S4 d; S8 q; F4 f; F8 db; S1 *b; S1 b2[2]; S1 b4[4]; S1 b8[8]; w = (S2)0xAB12; d = 0xCAFEBABE; q = 0xABABECAB12345678; f = (F4)1.1e10; db = 1.2e10; checkEndian(); printf("\n---------------------------------\n"); printf("\nw=%hx\n",w); b = (S1 *)&w; printf("S1s before w: "); printBytes(b,2); wordToBytecode(w,(U1 *)b2); printf("Bytecode w: "); printBytes(b2,2); w = bytecodeToWord((U1 *)b2); printf("S1s after w: "); printBytes(b,2); printf("w=%hx\n",w); printf("\n---------------------------------\n"); printf("\nd=%x\n",d); b = (S1 *)&d; printf("before d: "); printBytes(b,4); dwordToBytecode(d,(U1*)b4); printf("Bytecode d: "); printBytes(b4,4); d = bytecodeToDWord((U1*)b4); printf("after d: "); printBytes(b,4); printf("d=%x\n",d); printf("\n---------------------------------\n"); printf("\nq=%llx\n",q); b = (S1 *)&q; printf("before q: "); printBytes(b,8); qwordToBytecode(q,(U1*)b8); printf("byecode q: ");printBytes(b8,8); q = bytecodeToQWord((U1*)b8); printf("after q: "); printBytes(b,8); printf("q=%I64x\n",q); printf("\n---------------------------------\n"); printf("\nf=%e\n",f); b = (S1 *)&f; printf("before f: "); printBytes(b,4); floatToBytecode(f,(U1*)b4);printf("Bytecode f: ");printBytes(b4,4); f = bytecodeToFloat((U1*)b4); printf("after f: "); printBytes(b,4); printf("\nf=%e\n",f); printf("\n---------------------------------\n"); printf("\ndb=%e\n",db); b = (S1 *)&db; printf("before db: "); printBytes(b,8); doubleToBytecode(db,(U1*)b8);printf("Bytecode db: ");printBytes(b8,8); db = bytecodeToDouble((U1*)b8); printf("after db: "); printBytes(b,8); printf("db=%e\n",db); return;}/*end testConversion*//*-----------------------------------------------------------------*//* Returns the amount of free physical memory in bytes. Again, Linux didn't seem to provide anything outside of /proc/meminfo, free, etc. So, I simply return the max value ( I apologize for this crude hack )*/U4 getAvailableMemory(){ return(0xFFFFFFFF);}/*end getAvailableMemory*/#include<sys/stat.h>/* Returns size of file in bytes*/U4 getFileSize(char *name){ U4 size; S1 ret; struct stat buffer; ret = lstat(name,&buffer); if(ret==0){ return((U4)buffer.st_size); } else{ return(0); }}/*end getFileSize*//*-----------------------------------------------------------------*//* Linux distribution doesn't have string->64-bit conversion*/U8 stringToU8(char *str){ return((U8)atol(str));}/*end stringToU8*/
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -