亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? g2_splines.c

?? RNA二級結構預測程序
?? C
?? 第 1 頁 / 共 2 頁
字號:
/* * Do the last subinterval as a special case since no point follows the * last point */   for (i = 0; i < nb+1; i++) {      sxy[2 * nb * (n-2) + i + i] =	h1[i] * x[n-2] + h2[i] * x[n-1] + h3[i] * D1x;      sxy[2 * nb * (n-2) + i + i + 1] =	h1[i] * y[n-2] + h2[i] * y[n-1] + h3[i] * D1y;   }   g2_free(x);}void g2_raspln(int id, int n, double *points, double tn)/* *	FORMAL ARGUMENTS: * *	id			device id *	n			number of data points *	points			data points (x[i],y[i]) *	tn			tension factor [0.0, 2.0] *				0.0  very rounded *				2.0  not rounded at all */{   int m;   double *sxy;		/*	coords of the entire spline curve */   m = (n-1)*nb+1;   sxy = (double *) g2_malloc(m*2*sizeof(double));   g2_c_raspln(n, points, tn, sxy);   g2_poly_line(id, m, sxy);   g2_free(sxy);}void g2_filled_raspln(int id, int n, double *points, double tn)/* *	FORMAL ARGUMENTS: * *	id			device id *	n			number of data points *	points			data points (x[i],y[i]) *	tn			tension factor [0.0, 2.0] *				0.0  very rounded *				2.0  not rounded at all */{   int m;   double *sxy;		/*	coords of the entire spline curve */   m = (n-1)*nb+2;   sxy = (double *) g2_malloc(m*2*sizeof(double));   g2_c_raspln(n, points, tn, sxy);   sxy[(n+n-2) * nb + 2] = points[n+n-2];   sxy[(n+n-2) * nb + 3] = points[1];   g2_filled_polygon(id, m, sxy);   g2_free(sxy);}/* ---- And now for a rather different approach ---- *//* *	FUNCTION g2_c_newton * *	FUNCTIONAL DESCRIPTION: * *	Use Newton's Divided Differences to calculate an interpolation *	polynomial through the specified data points. *	This function is called by *		g2_c_para_3 and *		g2_c_para_5. * *	Dennis Mikkelson	distributed in GPLOT	Jan  5, 1988	F77 *	Tijs Michels		t.michels@vimec.nl	Jun 16, 1999	C * *	FORMAL ARGUMENTS: * *	n	number of entries in c1 and c2, 4 <= n <= MaxPts *		for para_3	(degree 3)	n = 4 *		for para_5	(degree 5)	n = 6 *		for para_i	(degree i)	n = (i + 1) *	c1	double array holding at most MaxPts values giving the *		first  coords of the points to be interpolated *	c2	double array holding at most MaxPts values giving the *		second coords of the points to be interpolated *	o	number of points at which the interpolation *		polynomial is to be evaluated *	xv	double array holding o points at which to *		evaluate the interpolation polynomial *	yv	double array holding upon return the values of the *		interpolation polynomial at the corresponding points in xv * *		yv is the OUTPUT * *	IMPLICIT INPUTS:	NONE *	IMPLICIT OUTPUTS:	NONE *	SIDE EFFECTS:		NONE */#define MaxPts 21#define xstr(s) __str(s)#define __str(s) #s/* * Maximum number of data points allowed * 21 would correspond to a polynomial of degree 20 */void g2_c_newton(int n, const double *c1, const double *c2,		 int o, const double *xv, double *yv){   int i, j;   double p, s;   double ddt[MaxPts][MaxPts];		/* Divided Difference Table */   if (n < 4) {      fputs("g2_c_newton: Error! Less than 4 points passed "	    "to function g2_c_newton\n", stderr);      return;   }   if (n > MaxPts) {      fputs("g2_c_newton: Error! More than " xstr(MaxPts) " points passed "	    "to function g2_c_newton\n", stderr);      return;   }/* First, build the divided difference table */   for (i = 0; i < n; i++)	ddt[i][0] = c2[i];   for (j = 1; j < n; j++) {      for (i = 0; i < n - j; i++)	ddt[i][j] = (ddt[i+1][j-1] - ddt[i][j-1]) / (c1[i+j] - c1[i]);   }/* Next, evaluate the polynomial at the specified points */   for (i = 0; i < o; i++) {      for (p = 1., s = ddt[0][0], j = 1; j < n; j++) {	 p *= xv[i] - c1[j-1];	 s += p * ddt[0][j];      }      yv[i] = s;   }}/* *	FUNCTION: g2_c_para_3 * *	FUNCTIONAL DESCRIPTION: * *	This function draws a piecewise parametric interpolation *	polynomial of degree 3 through the specified data points. *	The effect is similar to that obtained using DISSPLA to *	draw a curve after a call to the DISSPLA routine PARA3. *	The curve is parameterized using an approximation to the *	curve's arc length. The basic interpolation is done *	using function g2_c_newton. * *	Dennis Mikkelson	distributed in GPLOT	Jan  7, 1988	F77 *	Tijs Michels		t.michels@vimec.nl	Jun 17, 1999	C * *	FORMAL ARGUMENTS: * *	n	number of data points through which to draw the curve *	points	double array containing the x and y-coords of the data points * *	IMPLICIT INPUTS:	NONE *	IMPLICIT OUTPUTS:	NONE *	SIDE EFFECTS:		NONE *//* * #undef  nb * #define nb 40 * Number of straight connecting lines of which each polynomial consists. * So between one data point and the next, (nb-1) points are placed. */void g2_c_para_3(int n, const double *points, double *sxy){#define dgr	(3+1)#define nb2	(nb*2)   int i, j;   double x1t, y1t;   double o, step;   double X[nb2];		/* x-coords of the current curve piece */   double Y[nb2];		/* y-coords of the current curve piece */   double t[dgr];		/* data point parameter values */   double Xpts[dgr];		/* x-coords data point subsection */   double Ypts[dgr];		/* y-coords data point subsection */   double s[nb2];		/* parameter values at which to interpolate */   /* Do first TWO subintervals first */   g2_split(dgr, points, Xpts, Ypts);   t[0] = 0.;   for (i = 1; i < dgr; i++) {      x1t = Xpts[i] - Xpts[i-1];      y1t = Ypts[i] - Ypts[i-1];      t[i] = t[i-1] + sqrt(x1t * x1t + y1t * y1t);   }   step = t[2] / nb2;   for (i = 0; i < nb2; i++)	s[i] = i * step;   g2_c_newton(dgr, t, Xpts, nb2, s, X);   g2_c_newton(dgr, t, Ypts, nb2, s, Y);   for (i = 0; i < nb2; i++) {      sxy[i+i]   = X[i];      sxy[i+i+1] = Y[i];   }   /* Next, do later central subintervals */   for (j = 1; j < n - dgr + 1; j++) {      g2_split(dgr, points + j + j, Xpts, Ypts);      for (i = 1; i < dgr; i++) {	 x1t = Xpts[i] - Xpts[i-1];	 y1t = Ypts[i] - Ypts[i-1];	 t[i] = t[i-1] + sqrt(x1t * x1t + y1t * y1t);      }      o = t[1]; /* look up once */      step = (t[2] - o) / nb;      for (i = 0; i < nb; i++)	s[i] = i * step + o;      g2_c_newton(dgr, t, Xpts, nb, s, X);      g2_c_newton(dgr, t, Ypts, nb, s, Y);      for (i = 0; i < nb; i++) {	 sxy[(j + 1) * nb2 + i + i]     = X[i];	 sxy[(j + 1) * nb2 + i + i + 1] = Y[i];      }   }   /* Now do last subinterval */   o = t[2];   step = (t[3] - o) / nb;   for (i = 0; i < nb; i++)	s[i] = i * step + o;   g2_c_newton(dgr, t, Xpts, nb, s, X);   g2_c_newton(dgr, t, Ypts, nb, s, Y);   for (i = 0; i < nb; i++) {      sxy[(n - dgr + 2) * nb2 + i + i]     = X[i];      sxy[(n - dgr + 2) * nb2 + i + i + 1] = Y[i];   }   sxy[(n - 1) * nb2]     = points[n+n-2];   sxy[(n - 1) * nb2 + 1] = points[n+n-1];}/* *	FORMAL ARGUMENTS: * *	id			device id *	n			number of data points *	points			data points (x[i],y[i]) */void g2_para_3(int id, int n, double *points){   int m;   double *sxy;		/*	coords of the entire spline curve */   m = (n-1)*nb+1;   sxy = (double *) g2_malloc(m*2*sizeof(double));   g2_c_para_3(n, points, sxy);   g2_poly_line(id, m, sxy);   g2_free(sxy);}/* *	FORMAL ARGUMENTS: * *	id			device id *	n			number of data points *	points			data points (x[i],y[i]) */void g2_filled_para_3(int id, int n, double *points){   int m;   double *sxy;		/*	coords of the entire spline curve */   m = (n-1)*nb+2;   sxy = (double *) g2_malloc(m*2*sizeof(double));   g2_c_para_3(n, points, sxy);   sxy[m+m-2] = points[n+n-2];   sxy[m+m-1] = points[1];   g2_filled_polygon(id, m, sxy);   g2_free(sxy);}/* *	FUNCTION: g2_c_para_5 * *	As g2_c_para_3, but now plot a polynomial of degree 5 *//* * #undef  nb * #define nb 40 * Number of straight connecting lines of which each polynomial consists. * So between one data point and the next, (nb-1) points are placed. */void g2_c_para_5(int n, const double *points, double *sxy){#undef	dgr#define dgr	(5+1)#define nb3	(nb*3)   int i, j;   double x1t, y1t;   double o, step;   double X[nb3];		/* x-coords of the current curve piece */   double Y[nb3];		/* y-coords of the current curve piece */   double t[dgr];		/* data point parameter values */   double Xpts[dgr];		/* x-coords data point subsection */   double Ypts[dgr];		/* y-coords data point subsection */   double s[nb3];		/* parameter values at which to interpolate */   /* Do first THREE subintervals first */   g2_split(dgr, points, Xpts, Ypts);   t[0] = 0.;   for (i = 1; i < dgr; i++) {      x1t = Xpts[i] - Xpts[i-1];      y1t = Ypts[i] - Ypts[i-1];      t[i] = t[i-1] + sqrt(x1t * x1t + y1t * y1t);   }   step = t[3] / nb3;   for (i = 0; i < nb3; i++)	s[i] = i * step;   g2_c_newton(dgr, t, Xpts, nb3, s, X);   g2_c_newton(dgr, t, Ypts, nb3, s, Y);   for (i = 0; i < nb3; i++) {      sxy[i+i]   = X[i];      sxy[i+i+1] = Y[i];   }   /* Next, do later central subintervals */   for (j = 1; j < n - dgr + 1; j++) {      g2_split(dgr, points + j + j, Xpts, Ypts);      for (i = 1; i < dgr; i++) {	 x1t = Xpts[i] - Xpts[i-1];	 y1t = Ypts[i] - Ypts[i-1];	 t[i] = t[i-1] + sqrt(x1t * x1t + y1t * y1t);      }      o = t[2]; /* look up once */      step = (t[3] - o) / nb;      for (i = 0; i < nb; i++)	s[i] = i * step + o;      g2_c_newton(dgr, t, Xpts, nb, s, X);      g2_c_newton(dgr, t, Ypts, nb, s, Y);      for (i = 0; i < nb; i++) {	 sxy[(j + 2) * nb2 + i + i]     = X[i];	 sxy[(j + 2) * nb2 + i + i + 1] = Y[i];      }   }   /* Now do last TWO subinterval */   o = t[3];   step = (t[5] - o) / nb2;   for (i = 0; i < nb2; i++)	s[i] = i * step + o;   g2_c_newton(dgr, t, Xpts, nb2, s, X);   g2_c_newton(dgr, t, Ypts, nb2, s, Y);   for (i = 0; i < nb2; i++) {      sxy[(n - dgr + 3) * nb2 + i + i]     = X[i];      sxy[(n - dgr + 3) * nb2 + i + i + 1] = Y[i];   }   sxy[(n - 1) * nb2]     = points[n+n-2];   sxy[(n - 1) * nb2 + 1] = points[n+n-1];}/* *	FORMAL ARGUMENTS: * *	id			device id *	n			number of data points *	points			data points (x[i],y[i]) */void g2_para_5(int id, int n, double *points){   int m;   double *sxy;		/*	coords of the entire spline curve */   m = (n-1)*nb+1;   sxy = (double *) g2_malloc(m*2*sizeof(double));   g2_c_para_5(n, points, sxy);   g2_poly_line(id, m, sxy);   g2_free(sxy);}/* *	FORMAL ARGUMENTS: * *	id			device id *	n			number of data points *	points			data points (x[i],y[i]) */void g2_filled_para_5(int id, int n, double *points){   int m;   double *sxy;		/*	coords of the entire spline curve */   m = (n-1)*nb+2;   sxy = (double *) g2_malloc(m*2*sizeof(double));   g2_c_para_5(n, points, sxy);   sxy[m+m-2] = points[n+n-2];   sxy[m+m-1] = points[1];   g2_filled_polygon(id, m, sxy);   g2_free(sxy);}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品国产成人在线影院| 成人性生交大片免费看视频在线| 色哟哟国产精品| 一区二区三区四区av| 欧美视频在线一区二区三区| 亚洲一区二区成人在线观看| 91精品国产麻豆国产自产在线| 蜜臀91精品一区二区三区 | 久久色在线视频| 国产一区二区三区蝌蚪| 久久久久久电影| 99久久综合色| 天天综合天天做天天综合| 日韩一区二区免费高清| 风间由美一区二区三区在线观看| 亚洲人成在线观看一区二区| 欧美网站一区二区| 国产麻豆一精品一av一免费| 欧美国产视频在线| 91福利精品视频| 精品一区二区日韩| 亚洲靠逼com| 精品久久久久久久人人人人传媒| 国产aⅴ精品一区二区三区色成熟| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆| 欧美色综合天天久久综合精品| 国内成+人亚洲+欧美+综合在线 | 精品亚洲成a人| 中文字幕一区二区三区四区| 欧美一区二区三区视频在线观看| 国产成人av电影在线播放| 亚洲午夜影视影院在线观看| 久久久亚洲精品石原莉奈| 一本大道久久a久久综合| 国内精品国产三级国产a久久| 一区二区三区鲁丝不卡| 欧美激情一区二区三区蜜桃视频| 欧美三级日韩三级| 91在线视频播放| 国产精品影音先锋| 美腿丝袜亚洲色图| 亚洲香肠在线观看| 亚洲人精品午夜| 国产无遮挡一区二区三区毛片日本| 欧美日韩一区二区三区在线看| 国产成人av电影在线| 麻豆精品视频在线| 一区二区三区高清不卡| 国产精品三级电影| 久久先锋影音av鲁色资源网| 欧美一区二区日韩| 欧美专区在线观看一区| eeuss鲁片一区二区三区 | 夜夜嗨av一区二区三区中文字幕 | 久久人人97超碰com| 欧美日韩国产影片| 97久久精品人人做人人爽| 国产麻豆午夜三级精品| 九一久久久久久| 免费高清视频精品| 日韩成人一级大片| 三级亚洲高清视频| 天涯成人国产亚洲精品一区av| 亚洲精品中文在线观看| 中文字幕永久在线不卡| 国产精品嫩草影院av蜜臀| 久久免费美女视频| 久久久久久久av麻豆果冻| 26uuu国产一区二区三区| 久久一区二区三区四区| 久久精品视频免费观看| 国产欧美视频一区二区三区| 久久九九影视网| 国产欧美日本一区视频| 中文成人综合网| 亚洲欧洲三级电影| 亚洲男同性恋视频| 一区二区三区 在线观看视频| 一区二区三区精品视频| 香蕉加勒比综合久久| 日韩不卡免费视频| 国产自产视频一区二区三区| 国产一区二区三区蝌蚪| 99免费精品在线| 欧美综合天天夜夜久久| 91精品国产91久久久久久一区二区 | 欧美日韩国产一区二区三区地区| 欧美在线一二三| 欧美一区二区在线免费观看| 欧美tickle裸体挠脚心vk| 久久久不卡影院| 亚洲欧美另类久久久精品2019 | 日韩精品每日更新| 裸体一区二区三区| 国产ts人妖一区二区| 日本高清不卡aⅴ免费网站| 69堂成人精品免费视频| 2014亚洲片线观看视频免费| 国产精品日韩成人| 夜色激情一区二区| 久久电影网站中文字幕 | **网站欧美大片在线观看| 亚洲欧美日韩人成在线播放| 亚洲成人自拍偷拍| 国产剧情一区二区三区| 色菇凉天天综合网| 欧美精品一区二区不卡| 自拍偷拍亚洲激情| 麻豆免费看一区二区三区| jlzzjlzz欧美大全| 欧美一区二区在线不卡| 中文字幕一区免费在线观看| 丝袜美腿亚洲色图| eeuss影院一区二区三区| 欧美精品色综合| 亚洲国产精品av| 男男视频亚洲欧美| 不卡电影一区二区三区| 日韩免费一区二区三区在线播放| 亚洲国产精品激情在线观看| 亚洲成人黄色影院| 成人动漫av在线| 欧美xxxxxxxxx| 亚洲一二三级电影| 国产精品亚洲一区二区三区妖精| 色乱码一区二区三区88| 26uuu久久天堂性欧美| 午夜精品在线看| 北岛玲一区二区三区四区| 日韩三级高清在线| 亚洲影视在线播放| 不卡av免费在线观看| 日韩欧美美女一区二区三区| 亚洲一区二区高清| av一本久道久久综合久久鬼色| 91麻豆精品国产| 洋洋成人永久网站入口| 成人综合在线观看| 精品久久人人做人人爰| 亚洲午夜久久久久久久久电影网 | 欧美日韩亚洲综合一区二区三区| 国产三级精品三级在线专区| 久久精品国产免费看久久精品| 欧美亚洲综合色| 亚洲私人影院在线观看| 国产凹凸在线观看一区二区| 精品久久五月天| 久久精品国产免费| 91精品国产综合久久精品图片| 一区二区高清免费观看影视大全| 成+人+亚洲+综合天堂| 欧美极品美女视频| 丁香六月久久综合狠狠色| 久久亚洲捆绑美女| 国产精品99久久久| 久久人人爽爽爽人久久久| 激情深爱一区二区| 日韩美一区二区三区| 久久99最新地址| 欧美va亚洲va| 国产一区在线精品| 国产偷国产偷亚洲高清人白洁| 老司机一区二区| 亚洲精品在线观看网站| 麻豆91在线看| 国产婷婷色一区二区三区四区| 九色porny丨国产精品| 亚洲精品在线一区二区| 国内精品在线播放| 国产人妖乱国产精品人妖| 丁香网亚洲国际| 亚洲欧洲日本在线| 91一区在线观看| 一区二区三区.www| 7777精品伊人久久久大香线蕉经典版下载 | 国产精品福利影院| 91丝袜高跟美女视频| 亚洲综合区在线| 欧美日韩国产小视频| 喷白浆一区二区| 国产亚洲欧洲997久久综合 | 91浏览器在线视频| 亚洲国产欧美在线| 欧美电影免费观看高清完整版在 | av动漫一区二区| 一区二区三区四区不卡在线| 欧美精品电影在线播放| 激情小说亚洲一区| 亚洲欧洲日产国产综合网| 日本丰满少妇一区二区三区| 日韩和的一区二区| 久久精品在线免费观看| 91在线看国产| 日韩av不卡一区二区| 国产日韩欧美不卡| 欧美日韩国产免费一区二区 | 色综合天天视频在线观看| 亚洲电影欧美电影有声小说| 精品成人a区在线观看| 91在线视频网址|