?? ltc_ecc_map.c
字號(hào):
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com *//* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */#include "tomcrypt.h"/** @file ltc_ecc_map.c ECC Crypto, Tom St Denis*/ #ifdef MECC/** Map a projective jacbobian point back to affine space @param P [in/out] The point to map @param modulus The modulus of the field the ECC curve is in @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success*/int ltc_ecc_map(ecc_point *P, void *modulus, void *mp){ void *t1, *t2; int err; LTC_ARGCHK(P != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(mp != NULL); if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) { return CRYPT_MEM; } /* first map z back to normal */ if ((err = mp_montgomery_reduce(P->z, modulus, mp)) != CRYPT_OK) { goto done; } /* get 1/z */ if ((err = mp_invmod(P->z, modulus, t1)) != CRYPT_OK) { goto done; } /* get 1/z^2 and 1/z^3 */ if ((err = mp_sqr(t1, t2)) != CRYPT_OK) { goto done; } if ((err = mp_mod(t2, modulus, t2)) != CRYPT_OK) { goto done; } if ((err = mp_mul(t1, t2, t1)) != CRYPT_OK) { goto done; } if ((err = mp_mod(t1, modulus, t1)) != CRYPT_OK) { goto done; } /* multiply against x/y */ if ((err = mp_mul(P->x, t2, P->x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(P->x, modulus, mp)) != CRYPT_OK) { goto done; } if ((err = mp_mul(P->y, t1, P->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(P->y, modulus, mp)) != CRYPT_OK) { goto done; } if ((err = mp_set(P->z, 1)) != CRYPT_OK) { goto done; } err = CRYPT_OK;done: mp_clear_multi(t1, t2, NULL); return err;}#endif/* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_map.c,v $ *//* $Revision: 1.5 $ *//* $Date: 2006/12/04 02:50:11 $ */
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -