?? ch05.r
字號:
#-*- R -*-## Script from Fourth Edition of `Modern Applied Statistics with S'# Chapter 5 Univariate Statistics# for later use, from section 5.6perm.t.test <- function(d) {# ttest is function(x) mean(x)/sqrt(var(x)/length(x)) binary.v <- function(x, digits) { if(missing(digits)) { mx <- max(x) digits <- if(mx > 0) 1 + floor(log(mx, base = 2)) else 1 } ans <- 0:(digits - 1) lx <- length(x) x <- rep(x, rep(digits, lx)) x <- (x %/% 2^ans) %% 2 dim(x) <- c(digits, lx) x } digits <- length(d) n <- 2^digits x <- d * 2 * (binary.v(1:n, digits) - 0.5) mx <- matrix(1/digits, 1, digits) %*% x s <- matrix(1/(digits - 1), 1, digits) vx <- s %*% (x - matrix(mx, digits, n, byrow=T))^2 as.vector(mx/sqrt(vx/digits))}library(MASS)options(echo = T,width=65, digits=5, height=9999)library(lattice)trellis.device(postscript, file="ch05.ps", width=8, height=6, pointsize=9)rm(A, B) # precautionary clear-outattach(shoes)tperm <- perm.t.test(B - A) # see section 5.6detach()# from ch04if(!exists("fgl.df")) {fgl0 <- fgl[ ,-10] # omit type.fgl.df <- data.frame(type = rep(fgl$type, 9), y = as.vector(as.matrix(fgl0)), meas = factor(rep(1:9, each = 214), labels = names(fgl0))) invisible()}# 5.1 Probability distributionsx <- rt(250, df = 9)par(pty = "s")qqnorm(x)qqline(x)par(pty = "m")x <- rgamma(100, shape = 5, rate = 0.1)fitdistr(x, "gamma")x2 <- rt(250, df = 9)fitdistr(x2, "t", df = 9)fitdistr(x2, "t")# 5.2 Generating random datacontam <- rnorm( 100, 0, (1 + 2*rbinom(100, 1, 0.05)) )# 5.3 Data summariespar(mfrow=c(2,3))hist(geyser$duration, "scott", xlab="duration")hist(chem, "scott")hist(tperm, "scott")hist(geyser$duration, "FD", xlab="duration")hist(chem, "FD")hist(tperm, "FD")par(mfrow=c(1,1))swiss.fertility <- swiss[, 1]stem(swiss.fertility)stem(chem)stem(abbey)stem(abbey, scale = 0.4) ## use scale = 0.4 in Rpar(mfrow = c(1,2))boxplot(chem, sub = "chem", range = 0.5)boxplot(abbey, sub = "abbey")par(mfrow = c(1,1))bwplot(type ~ y | meas, data = fgl.df, scales = list(x="free"), strip = function(...) strip.default(..., style=1), xlab = "")# 5.4 Classical univariate statisticsattach(shoes)t.test(A, mu = 10)t.test(A)$conf.intwilcox.test(A, mu = 10)var.test(A, B)t.test(A, B, var.equal = T)t.test(A, B, var.equal = F)wilcox.test(A, B)t.test(A, B, paired = T)wilcox.test(A, B, paired = T)detach()par(mfrow = c(1, 2))truehist(tperm, xlab = "diff")x <- seq(-4,4, 0.1)lines(x, dt(x,9))#cdf.compare(tperm, distribution = "t", df = 9)sres <- c(sort(tperm), 4)yres <- (0:1024)/1024plot(sres, yres, type="S", xlab="diff", ylab="")lines(x, pt(x,9), lty=3)legend(-5, 1.05, c("Permutation dsn","t_9 cdf"), lty = c(1,3))par(mfrow = c(1, 1))# 5.5 Robust summaries# Figure 5.7 was obtained byx <- seq(-10, 10, len=500)y <- dt(x, 25, log = TRUE)z <- -diff(y)/diff(x)plot(x[-1], z, type = "l", xlab = "", ylab = "psi")y2 <- dt(x, 5, log = TRUE)z2 <- -diff(y2)/diff(x)lines(x[-1], z2, lty = 2)sort(chem)mean(chem)median(chem)#location.m(chem)#location.m(chem, psi.fun="huber")mad(chem)#scale.tau(chem)#scale.tau(chem, center=3.68)unlist(huber(chem))unlist(hubers(chem))fitdistr(chem, "t", list(m = 3, s = 0.5), df = 5)sort(abbey)mean(abbey)median(abbey)#location.m(abbey)#location.m(abbey, psi.fun="huber")unlist(hubers(abbey))unlist(hubers(abbey, k = 2))unlist(hubers(abbey, k = 1))fitdistr(abbey, "t", list(m = 12, s = 5), df = 10)# 5.6 Density estimation# Figure 5.8attach(geyser)par(mfrow=c(2,3))truehist(duration, h=0.5, x0=0.0, xlim=c(0, 6), ymax=0.7)truehist(duration, h=0.5, x0=0.1, xlim=c(0, 6), ymax=0.7)truehist(duration, h=0.5, x0=0.2, xlim=c(0, 6), ymax=0.7)truehist(duration, h=0.5, x0=0.3, xlim=c(0, 6), ymax=0.7)truehist(duration, h=0.5, x0=0.4, xlim=c(0, 6), ymax=0.7)breaks <- seq(0, 5.9, 0.1)counts <- numeric(length(breaks))for(i in (0:4)) counts[i+(1:55)] <- counts[i+(1:55)] + rep(hist(duration, breaks=0.1*i + seq(0, 5.5, 0.5), prob=TRUE, plot=FALSE)$intensities, rep(5,11))plot(breaks+0.05, counts/5, type="l", xlab="duration", ylab="averaged", bty="n", xlim=c(0, 6), ylim=c(0, 0.7))detach()attach(geyser)truehist(duration, nbins = 15, xlim = c(0.5, 6), ymax = 1.2)lines(density(duration, width = "nrd"))truehist(duration, nbins = 15, xlim = c(0.5, 6), ymax = 1.2)lines(density(duration, width = "SJ", n = 256), lty = 3)lines(density(duration, n = 256, width = "SJ-dpi"), lty = 1)detach()gal <- galaxies/1000plot(x = c(0, 40), y = c(0, 0.3), type = "n", bty = "l", xlab = "velocity of galaxy (1000km/s)", ylab = "density")rug(gal)lines(density(gal, width = "SJ-dpi", n = 256), lty = 1)lines(density(gal, width = "SJ", n = 256), lty = 3)library(polspline)x <- seq(5, 40, length = 500)lines(x, doldlogspline(x, oldlogspline(gal)), lty = 2)geyser2 <- data.frame(as.data.frame(geyser)[-1, ], pduration = geyser$duration[-299])attach(geyser2)par(mfrow = c(2, 2))plot(pduration, waiting, xlim = c(0.5, 6), ylim = c(40, 110), xlab = "previous duration", ylab = "waiting")f1 <- kde2d(pduration, waiting, n = 50, lims=c(0.5, 6, 40, 110))image(f1, zlim = c(0, 0.075), xlab = "previous duration", ylab = "waiting")f2 <- kde2d(pduration, waiting, n = 50, lims=c(0.5, 6, 40, 110), h = c(width.SJ(duration), width.SJ(waiting)) )image(f2, zlim = c(0, 0.075), xlab = "previous duration", ylab = "waiting")persp(f2, phi = 30, theta = 20, d = 5, xlab = "previous duration", ylab = "waiting", zlab = "")detach()density(gal, n = 1, from = 20.833, to = 20.834, width = "SJ")$y1/(2 * sqrt(length(gal)) * 0.13)set.seed(101)m <- 1000res <- numeric(m)for (i in 1:m) res[i] <- median(sample(gal, replace = T))mean(res - median(gal))sqrt(var(res))truehist(res, h = 0.1)lines(density(res, width = "SJ-dpi", n = 256))quantile(res, p = c(0.025, 0.975))x <- seq(19.5, 22.5, length = 500)lines(x, doldlogspline(x, oldlogspline(res)), lty = 3)library(boot)set.seed(101)gal.boot <- boot(gal, function(x, i) median(x[i]), R = 1000)gal.bootboot.ci(gal.boot, conf = c(0.90, 0.95), type = c("norm","basic","perc","bca"))plot(gal.boot)if(F){ # bootstrap() is an S-PLUS functiongal.bt <- bootstrap(gal, median, seed = 101, B = 1000)summary(gal.bt)plot(gal.bt)qqnorm(gal.bt)limits.emp(gal.bt)limits.bca(gal.bt)}sim.gen <- function(data, mle) { n <- length(data) data[sample(n, replace = T)] + mle*rnorm(n)}gal.boot2 <- boot(gal, median, R = 1000, sim = "parametric", ran.gen = sim.gen, mle = 0.5)boot.ci(gal.boot2, conf = c(0.90, 0.95), type = c("norm","basic","perc"))attach(shoes)t.test(B - A)shoes.boot <- boot(B - A, function(x,i) mean(x[i]), R = 1000)boot.ci(shoes.boot, type = c("norm", "basic", "perc", "bca"))mean.fun <- function(d, i) { n <- length(i) c(mean(d[i]), (n-1)*var(d[i])/n^2)}shoes.boot2 <- boot(B - A, mean.fun, R = 1000)boot.ci(shoes.boot2, type = "stud")detach()# End of ch05
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -