亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? ch06.r

?? 本程序是基于linux系統下c++代碼
?? R
字號:
#-*- R -*-## Script from Fourth Edition of `Modern Applied Statistics with S'# Chapter 6   Linear Statistical Modelslibrary(MASS)library(lattice)options(echo = T,width=65, digits=5, height=9999)trellis.device(postscript, file="ch06.ps", width=8, height=6, pointsize=9)options(contrasts = c("contr.helmert", "contr.poly"))# 6.1  A linear regression examplexyplot(Gas ~ Temp | Insul, whiteside, panel =  function(x, y, ...) {    panel.xyplot(x, y, ...)    panel.lmline(x, y, ...)  }, xlab = "Average external temperature (deg. C)",  ylab = "Gas consumption  (1000 cubic feet)", aspect = "xy",  strip = function(...) strip.default(..., style = 1))gasB <- lm(Gas ~ Temp, data = whiteside, subset = Insul=="Before")gasA <- update(gasB, subset = Insul=="After")summary(gasB)summary(gasA)varB <- deviance(gasB)/gasB$df.resid    # direct calculationvarB <- summary(gasB)$sigma^2           # alternativegasBA <- lm(Gas ~ Insul/Temp - 1, data = whiteside)summary(gasBA)gasQ <- lm(Gas ~ Insul/(Temp + I(Temp^2)) - 1, data = whiteside)summary(gasQ)$coef# R: options(contrasts = c("contr.helmert", "contr.poly"))gasPR <- lm(Gas ~ Insul + Temp, data = whiteside)anova(gasPR, gasBA)oldcon <- options(contrasts = c("contr.treatment", "contr.poly"))gasBA1 <- lm(Gas ~ Insul*Temp, data = whiteside)summary(gasBA1)$coefoptions(oldcon)# 6.2  Model formulae and model matricesdat <- data.frame(a = factor(rep(1:3, 3)),                  y = rnorm(9, rep(2:4, 3), 0.1))obj <- lm(y ~ a, dat)(alf.star <- coef(obj))Ca <- contrasts(dat$a)      # contrast matrix for `a'drop(Ca %*% alf.star[-1])dummy.coef(obj)N <- factor(Nlevs <- c(0,1,2,4))contrasts(N)contrasts(ordered(N))N2 <- Ncontrasts(N2, 2) <- poly(Nlevs, 2)N2 <- C(N, poly(Nlevs, 2), 2)       # alternativecontrasts(N2)fractions(ginv(contr.helmert(n = 4)))Cp <- diag(-1, 4, 5);  Cp[row(Cp) == col(Cp) - 1] <- 1Cpfractions(ginv(Cp))# 6.3  Regression diagnostics(hills.lm <- lm(time ~ dist + climb, data = hills))frame()par(fig = c(0, 0.6, 0, 0.55))plot(fitted(hills.lm), studres(hills.lm))abline(h = 0, lty = 2)# identify(fitted(hills.lm), studres(hills.lm), row.names(hills))par(fig = c(0.6, 1, 0, 0.55), pty = "s")qqnorm(studres(hills.lm))qqline(studres(hills.lm))par(pty = "m")hills.hat <- lm.influence(hills.lm)$hatcbind(hills, lev = hills.hat)[hills.hat > 3/35, ]cbind(hills, pred = predict(hills.lm))["Knock Hill", ](hills1.lm <- update(hills.lm, subset = -18))update(hills.lm, subset = -c(7, 18))summary(hills1.lm)summary(update(hills1.lm,  weights = 1/dist^2))lm(time ~ -1 + dist + climb, hills[-18, ], weight = 1/dist^2)# hills <- hills   # make a local copy (needed in S-PLUS)hills$ispeed <- hills$time/hills$disthills$grad <- hills$climb/hills$dist(hills2.lm <- lm(ispeed ~ grad, data = hills[-18, ]))frame()par(fig = c(0, 0.6, 0, 0.55))plot(hills$grad[-18], studres(hills2.lm), xlab = "grad")abline(h = 0, lty = 2)# identify(hills$grad[-18], studres(hills2.lm), row.names(hills)[-18])par(fig = c(0.6, 1, 0, 0.55), pty = "s")qqnorm(studres(hills2.lm))qqline(studres(hills2.lm))par(pty = "m")hills2.hat <- lm.influence(hills2.lm)$hatcbind(hills[-18,], lev = hills2.hat)[hills2.hat > 1.8*2/34, ]# 6.4  Safe predictionquad1 <- lm(Weight ~ Days + I(Days^2), data = wtloss)quad2 <- lm(Weight ~ poly(Days, 2), data = wtloss)new.x <- data.frame(Days = seq(250, 300, 10),                    row.names = seq(250, 300, 10))predict(quad1, newdata = new.x)predict(quad2, newdata = new.x)# predict.gam(quad2, newdata = new.x) # S-PLUS only# 6.5  Robust and resistant regression# library(lqs)phones.lm <- lm(calls ~ year, data = phones)attach(phones); plot(year, calls); detach()abline(phones.lm$coef)abline(rlm(calls ~ year, phones, maxit=50), lty = 2, col = 2)abline(lqs(calls ~ year, phones), lty =3, col = 3)# legend(locator(1), lty = 1:3, col = 1:3,#        legend = c("least squares", "M-estimate", "LTS"))summary(lm(calls ~ year, data = phones), cor = F)summary(rlm(calls ~ year, maxit = 50, data = phones), cor = F)summary(rlm(calls ~ year, scale.est = "proposal 2",             data = phones), cor = F)summary(rlm(calls ~ year, data = phones, psi = psi.bisquare),         cor = F)lqs(calls ~ year, data = phones)lqs(calls ~ year, data = phones, method = "lms")lqs(calls ~ year, data = phones, method = "S")summary(rlm(calls ~ year, data = phones, method = "MM"), cor = F)# library(robust) # S-PLUS only# phones.lmr <- lmRob(calls ~ year, data = phones)# summary(phones.lmr)# plot(phones.lmr)hills.lmhills1.lm # omitting Knock Hillrlm(time ~ dist + climb, data = hills)summary(rlm(time ~ dist + climb, data = hills,             weights = 1/dist^2, method = "MM"), cor = F)lqs(time ~ dist + climb, data = hills, nsamp = "exact")summary(hills2.lm) # omitting Knock Hillsummary(rlm(ispeed ~ grad, data = hills), cor = F)summary(rlm(ispeed ~ grad, data = hills, method="MM"), cor=F)# summary(lmRob(ispeed ~ grad, data = hills))lqs(ispeed ~ grad, data = hills)# 6.6  Bootstrapping linear modelslibrary(boot)fit <- lm(calls ~ year, data = phones)ph <- data.frame(phones, res = resid(fit), fitted = fitted(fit))ph.fun <- function(data, i) {  d <- data  d$calls <- d$fitted + d$res[i]  coef(update(fit, data=d))}(ph.lm.boot <- boot(ph, ph.fun, R = 999))fit <- rlm(calls ~ year, method = "MM", data = phones)ph <- data.frame(phones, res = resid(fit), fitted = fitted(fit))(ph.rlm.boot <- boot(ph, ph.fun, R = 999))# 6.7  Factorial designs and designed experimentsoptions(contrasts=c("contr.helmert", "contr.poly"))(npk.aov <- aov(yield ~ block + N*P*K, data = npk))summary(npk.aov)alias(npk.aov)coef(npk.aov)options(contrasts=c("contr.treatment", "contr.poly"))npk.aov1 <- aov(yield ~ block + N + K, data = npk)summary.lm(npk.aov1)se.contrast(npk.aov1, list(N == "0", N == "1"), data = npk)model.tables(npk.aov1, type = "means", se = T)mp <- c("-", "+")(NPK <- expand.grid(N = mp, P = mp, K = mp))if(F) {blocks13 <- fac.design(levels = c(2, 2, 2),    factor= list(N=mp, P=mp, K=mp), rep = 3, fraction = 1/2)blocks46 <- fac.design(levels = c(2, 2, 2),   factor = list(N=mp, P=mp, K=mp), rep = 3, fraction = ~ -N:P:K)NPK <- design(block = factor(rep(1:6, each  = 4)),             rbind(blocks13, blocks46))i <- order(runif(6)[NPK$block], runif(24))NPK <- NPK[i,]  # Randomizedlev <- rep(2, 7)factors <- list(S=mp, D=mp, H=mp, G=mp, R=mp, B=mp, P=mp)(Bike <- fac.design(lev, factors,     fraction = ~ S:D:G + S:H:R + D:H:B + S:D:H:P))replications(~ .^2, data=Bike)}# 6.8  An unbalanced four-way layoutattach(quine)table(Lrn, Age, Sex, Eth)Means <- tapply(Days, list(Eth, Sex, Age, Lrn), mean)Vars  <- tapply(Days, list(Eth, Sex, Age, Lrn), var)SD <- sqrt(Vars)par(mfrow = c(1, 2), pty="s")plot(Means, Vars, xlab = "Cell Means", ylab = "Cell Variances")plot(Means, SD, xlab = "Cell Means", ylab = "Cell Std Devn.")detach()boxcox(Days+1 ~ Eth*Sex*Age*Lrn, data = quine, singular.ok = T,  lambda = seq(-0.05, 0.45, len = 20))logtrans(Days ~ Age*Sex*Eth*Lrn, data = quine,    alpha = seq(0.75, 6.5, len = 20), singular.ok = T)quine.hi <- aov(log(Days + 2.5) ~ .^4, quine)quine.nxt <- update(quine.hi, . ~ . - Eth:Sex:Age:Lrn)dropterm(quine.nxt, test = "F")quine.lo <- aov(log(Days+2.5) ~ 1, quine)addterm(quine.lo, quine.hi, test = "F")quine.stp <- stepAIC(quine.nxt,   scope = list(upper = ~Eth*Sex*Age*Lrn, lower = ~1),   trace = F)quine.stp$anovadropterm(quine.stp, test = "F")quine.3 <- update(quine.stp, . ~ . - Eth:Age:Lrn)dropterm(quine.3, test = "F")quine.4 <- update(quine.3, . ~ . - Eth:Age)quine.5 <- update(quine.4, . ~ . - Age:Lrn)dropterm(quine.5, test = "F")# 6.9  Predicting computer performancepar(mfrow = c(1, 2), pty = "s")boxcox(perf ~ syct + mmin + mmax + cach + chmin + chmax,       data = cpus, lambda = seq(0, 1, 0.1))cpus1 <- cpusattach(cpus)for(v in names(cpus)[2:7])  cpus1[[v]] <- cut(cpus[[v]], unique(quantile(cpus[[v]])),                    include.lowest = T)detach()boxcox(perf ~ syct + mmin + mmax + cach + chmin + chmax,       data = cpus1, lambda = seq(-0.25, 1, 0.1))par(mfrow = c(1, 1), pty = "m")set.seed(123)cpus2 <- cpus[, 2:8]  # excludes names, authors' predictionscpus2[, 1:3] <- log10(cpus2[, 1:3])#cpus.samp <- sample(1:209, 100)cpus.samp <-c(3, 5, 6, 7, 8, 10, 11, 16, 20, 21, 22, 23, 24, 25, 29, 33, 39, 41, 44, 45,46, 49, 57, 58, 62, 63, 65, 66, 68, 69, 73, 74, 75, 76, 78, 83, 86,88, 98, 99, 100, 103, 107, 110, 112, 113, 115, 118, 119, 120, 122,124, 125, 126, 127, 132, 136, 141, 144, 146, 147, 148, 149, 150, 151,152, 154, 156, 157, 158, 159, 160, 161, 163, 166, 167, 169, 170, 173,174, 175, 176, 177, 183, 184, 187, 188, 189, 194, 195, 196, 197, 198,199, 202, 204, 205, 206, 208, 209)cpus.lm <- lm(log10(perf) ~ ., data = cpus2[cpus.samp, ])test.cpus <- function(fit)   sqrt(sum((log10(cpus2[-cpus.samp, "perf"]) -             predict(fit, cpus2[-cpus.samp,]))^2)/109)test.cpus(cpus.lm)cpus.lm2 <- stepAIC(cpus.lm, trace=F)cpus.lm2$anovatest.cpus(cpus.lm2)# 6.10  Multiple comparisonsimmer.aov <- aov((Y1 + Y2)/2 ~ Var + Loc, data = immer)summary(immer.aov)model.tables(immer.aov, type = "means", se = T, cterms = "Var")if(F) {multicomp(immer.aov, plot = T)oats1 <- aov(Y ~ N + V + B, data = oats)summary(oats1)multicomp(oats1, focus = "V")multicomp(oats1, focus = "N", comparisons = "mcc", control = 1)lmat <- matrix(c(0,-1,1,rep(0, 11), 0,0,-1,1, rep(0,10),                 0,0,0,-1,1,rep(0,9)),,3,               dimnames = list(NULL,               c("0.2cwt-0.0cwt", "0.4cwt-0.2cwt", "0.6cwt-0.4cwt")))multicomp(oats1, lmat = lmat, bounds = "lower", comparisons = "none")}(tk <- TukeyHSD(immer.aov, which = "Var"))plot(tk)oats1 <- aov(Y ~ N + V + B, data = oats)(tk <- TukeyHSD(oats1, which = "V"))plot(tk)## An alternative under R is to use package multcomp (which requires mvtnorm)## This code is for multcomp >= 0.991-1library(multcomp)## next is slow:(tk <- confint(glht(immer.aov, linfct = mcp(Var = "Tukey"))))plot(tk)confint(glht(oats1, linfct = mcp(V = "Tukey")))lmat <- matrix(c(0,-1,1,rep(0, 11), 0,0,-1,1, rep(0,10),                 0,0,0,-1,1,rep(0,9)),,3,               dimnames = list(NULL,               c("0.2cwt-0.0cwt", "0.4cwt-0.2cwt", "0.6cwt-0.4cwt")))confint(glht(oats1, linfct = mcp(N = t(lmat[2:5, ])), alternative = "greater"))plot(tk)# End of ch06

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人手机在线视频| 色国产综合视频| 亚洲国产精品久久人人爱| 精品久久久久久久一区二区蜜臀| 91视视频在线观看入口直接观看www | 亚洲精品乱码久久久久久| 日韩欧美高清一区| 在线精品观看国产| 丁香桃色午夜亚洲一区二区三区| 天天做天天摸天天爽国产一区 | 日韩成人免费电影| 自拍视频在线观看一区二区| 精品国产乱码久久久久久久| 欧美性色aⅴ视频一区日韩精品| 国产成人免费视频网站高清观看视频 | 欧美日韩夫妻久久| 色婷婷久久久久swag精品 | 国产成人日日夜夜| 日本午夜一本久久久综合| 亚洲最色的网站| 中文字幕一区二区三区色视频| 久久影院电视剧免费观看| 8x福利精品第一导航| 欧美视频三区在线播放| 色丁香久综合在线久综合在线观看| 国产成人亚洲精品狼色在线| 久久激情五月婷婷| 日韩电影免费在线| 亚洲国产一区二区在线播放| 亚洲激情自拍视频| 亚洲人xxxx| 中文字幕欧美一区| 国产精品毛片久久久久久| ww久久中文字幕| 精品1区2区在线观看| 日韩午夜激情电影| 日韩精品一区国产麻豆| 91精品在线免费| 91精品国产黑色紧身裤美女| 在线成人av影院| 欧美一级生活片| 日韩精品一区二区三区视频播放| 日韩一级免费一区| 精品国产91洋老外米糕| 2023国产精华国产精品| 精品第一国产综合精品aⅴ| 日韩欧美在线综合网| 精品人伦一区二区色婷婷| 精品久久人人做人人爽| 久久亚洲免费视频| 国产精品免费aⅴ片在线观看| 中文字幕乱码日本亚洲一区二区 | 色婷婷激情一区二区三区| 在线一区二区视频| 欧美亚洲图片小说| 91麻豆精品国产91久久久| 欧美精品一区在线观看| 国产亚洲va综合人人澡精品| 国产精品激情偷乱一区二区∴| 国产精品二三区| 亚洲精品水蜜桃| 日日摸夜夜添夜夜添亚洲女人| 另类综合日韩欧美亚洲| 国产精品亚洲专一区二区三区| 国产成人av自拍| 91免费视频网址| 69p69国产精品| 国产亚洲欧美日韩在线一区| 中文字幕亚洲一区二区va在线| 国产欧美日韩激情| 亚洲激情图片qvod| 精品一区二区三区蜜桃| 成人黄页毛片网站| 欧美性感一类影片在线播放| 日韩欧美中文字幕一区| 国产精品久久久久久久久免费桃花 | 丰满少妇久久久久久久| 色综合夜色一区| 日韩一区二区电影网| 国产精品久久777777| 日韩不卡一区二区三区| 国产91丝袜在线18| 在线播放国产精品二区一二区四区| 精品国产91乱码一区二区三区| 国产精品麻豆欧美日韩ww| 日韩成人午夜精品| 成人a免费在线看| 51午夜精品国产| 国产精品情趣视频| 麻豆一区二区在线| 色久综合一二码| 国产性色一区二区| 日韩二区在线观看| 99久久国产免费看| 精品国产乱码久久久久久闺蜜| 一区二区三区中文字幕精品精品| 久久国产婷婷国产香蕉| 91黄视频在线| 国产精品每日更新| 国产一区二区三区香蕉| 欧美日韩国产综合草草| 中文字幕中文字幕在线一区| 麻豆精品精品国产自在97香蕉 | 555www色欧美视频| 亚洲精品中文在线观看| 国产福利一区二区三区在线视频| 国产精品一级在线| 国产日韩欧美精品一区| 亚洲国产一区二区a毛片| 成人午夜精品一区二区三区| 日韩视频在线你懂得| 亚洲午夜精品一区二区三区他趣| 丁香婷婷深情五月亚洲| 久久日韩粉嫩一区二区三区 | 亚洲精品成a人| 成人综合在线网站| 久久色成人在线| 青青草国产精品97视觉盛宴| 91猫先生在线| 国产精品毛片无遮挡高清| 国产成人在线观看| 亚洲精品一线二线三线无人区| 亚洲成人av一区二区三区| 在线观看av一区二区| 亚洲日本一区二区| www.欧美精品一二区| 国产精品丝袜在线| 国产91在线观看| 国产女人水真多18毛片18精品视频 | 亚洲成av人片在线观看| av成人动漫在线观看| 中文字幕欧美日本乱码一线二线| 国产成人在线视频免费播放| 国产欧美一区二区在线| 国产精品一区2区| 久久久99精品免费观看不卡| 国产一区二区三区av电影| 久久蜜桃av一区二区天堂| 国产精品 日产精品 欧美精品| 欧美电视剧在线观看完整版| 久久精品国产77777蜜臀| 日韩欧美国产一区在线观看| 韩国av一区二区三区| 久久精品一区四区| 国产a区久久久| 亚洲日韩欧美一区二区在线| 在线观看免费成人| 日本网站在线观看一区二区三区| 日韩欧美精品在线视频| 国产精品99久久久久久有的能看| 国产人成亚洲第一网站在线播放| 国产成人自拍在线| 亚洲欧美激情一区二区| 欧美体内she精高潮| 日韩二区三区四区| 久久久久9999亚洲精品| 91丨九色丨蝌蚪丨老版| 午夜久久久影院| 久久亚洲一区二区三区四区| 99久久精品情趣| 五月天网站亚洲| 精品国产伦理网| voyeur盗摄精品| 亚洲一区二区三区美女| 日韩免费看网站| 99在线精品一区二区三区| 一区二区三区在线看| 制服.丝袜.亚洲.中文.综合| 国产精品亚洲一区二区三区妖精| 亚洲欧美综合另类在线卡通| 精品污污网站免费看| 韩国欧美国产一区| 自拍视频在线观看一区二区| 制服丝袜一区二区三区| 丁香啪啪综合成人亚洲小说| 亚洲一线二线三线久久久| 欧美xxxxxxxx| 在线一区二区三区四区五区| 麻豆成人在线观看| 亚洲三级久久久| 亚洲精品一区二区三区蜜桃下载| 99久久精品久久久久久清纯| 日韩激情中文字幕| 国产欧美精品一区二区色综合 | 国产盗摄一区二区三区| 一区二区三区在线视频免费| 欧美成人激情免费网| 91福利国产成人精品照片| 美女诱惑一区二区| 一区二区三区四区视频精品免费 | 亚洲国产综合91精品麻豆| 精品国产乱子伦一区| 欧美亚洲国产一区在线观看网站 | 亚洲综合色丁香婷婷六月图片| 日韩美女视频在线| 欧美午夜不卡在线观看免费| 成人黄页在线观看| 久久成人免费电影| 亚洲图片一区二区| 国产精品麻豆一区二区 |