亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? ch12.r

?? 本程序是基于linux系統(tǒng)下c++代碼
?? R
字號(hào):
#-*- R -*-## Script from Fourth Edition of `Modern Applied Statistics with S'# Chapter 12   Classificationlibrary(MASS)postscript(file="ch12.ps", width=8, height=6, pointsize=9)options(echo=T, width=65, digits=5)library(class)library(nnet)# 12.1  Discriminant Analysisir <- rbind(iris3[,,1], iris3[,,2], iris3[,,3])ir.species <- factor(c(rep("s", 50), rep("c", 50), rep("v", 50)))(ir.lda <- lda(log(ir), ir.species))ir.ld <- predict(ir.lda, dimen = 2)$xeqscplot(ir.ld, type = "n", xlab = "first linear discriminant",          ylab = "second linear discriminant")text(ir.ld, labels = as.character(ir.species[-143]),      col = 3 + unclass(ir.species), cex = 0.8)plot(ir.lda, dimen = 1)plot(ir.lda, type = "density", dimen = 1)lcrabs <- log(crabs[, 4:8])crabs.grp <- factor(c("B", "b", "O", "o")[rep(1:4, each = 50)])(dcrabs.lda <- lda(crabs$sex ~ FL + RW + CL + CW, lcrabs))table(crabs$sex, predict(dcrabs.lda)$class)(dcrabs.lda4 <- lda(crabs.grp ~ FL + RW + CL + CW, lcrabs))dcrabs.pr4 <- predict(dcrabs.lda4, dimen = 2)dcrabs.pr2 <- dcrabs.pr4$post[, c("B", "O")] %*% c(1, 1)table(crabs$sex, dcrabs.pr2 > 0.5)cr.t <- dcrabs.pr4$x[, 1:2]eqscplot(cr.t, type = "n", xlab = "First LD", ylab = "Second LD")text(cr.t, labels = as.character(crabs.grp))perp <- function(x, y) {   m <- (x+y)/2   s <- - (x[1] - y[1])/(x[2] - y[2])   abline(c(m[2] - s*m[1], s))   invisible()}# For R replace @means by $meanscr.m <- lda(cr.t, crabs$sex)$meanspoints(cr.m, pch = 3, mkh = 0.3)perp(cr.m[1, ], cr.m[2, ])cr.lda <- lda(cr.t, crabs.grp)x <- seq(-6, 6, 0.25)y <- seq(-2, 2, 0.25)Xcon <- matrix(c(rep(x,length(y)),              rep(y, rep(length(x), length(y)))),,2)cr.pr <- predict(cr.lda, Xcon)$post[, c("B", "O")] %*% c(1,1)contour(x, y, matrix(cr.pr, length(x), length(y)),       levels = 0.5, labex = 0, add = T, lty=  3)for(i in c("O", "o",  "B", "b")) print(var(lcrabs[crabs.grp == i, ]))fgl.ld <- predict(lda(type ~ ., fgl), dimen = 2)$xeqscplot(fgl.ld, type = "n", xlab = "LD1", ylab = "LD2")# either# for(i in seq(along = levels(fgl$type))) {#    set <- fgl$type[-40] == levels(fgl$type)[i]#    points(fgl.ld[set,], pch = 18, cex = 0.6, col = 2 + i)}# key(text = list(levels(fgl$type), col = 3:8))# ortext(fgl.ld, cex = 0.6,     labels = c("F", "N", "V", "C", "T", "H")[fgl$type[-40]])fgl.rld <- predict(lda(type ~ ., fgl, method = "t"), dimen = 2)$xeqscplot(fgl.rld, type = "n", xlab = "LD1", ylab = "LD2")# either# for(i in seq(along = levels(fgl$type))) {#   set <- fgl$type[-40] == levels(fgl$type)[i]#   points(fgl.rld[set,], pch = 18, cex = 0.6, col = 2 + i)}# key(text = list(levels(fgl$type), col = 3:8))# ortext(fgl.rld, cex = 0.6,     labels = c("F", "N", "V", "C", "T", "H")[fgl$type[-40]])# 12.2  Classification theory#decrease len if you have little memory.predplot <- function(object, main="", len = 100, ...){    plot(Cushings[,1], Cushings[,2], log="xy", type="n",         xlab = "Tetrahydrocortisone", ylab = "Pregnanetriol", main = main)    for(il in 1:4) {        set <- Cushings$Type==levels(Cushings$Type)[il]        text(Cushings[set, 1], Cushings[set, 2],             labels=as.character(Cushings$Type[set]), col = 2 + il) }    xp <- seq(0.6, 4.0, length=len)    yp <- seq(-3.25, 2.45, length=len)    cushT <- expand.grid(Tetrahydrocortisone = xp,                         Pregnanetriol = yp)    Z <- predict(object, cushT, ...); zp <- as.numeric(Z$class)    zp <- Z$post[,3] - pmax(Z$post[,2], Z$post[,1])    contour(exp(xp), exp(yp), matrix(zp, len),            add = T, levels = 0, labex = 0)    zp <- Z$post[,1] - pmax(Z$post[,2], Z$post[,3])    contour(exp(xp), exp(yp), matrix(zp, len),            add = T, levels = 0, labex = 0)    invisible()}cushplot <- function(xp, yp, Z){    plot(Cushings[, 1], Cushings[, 2], log = "xy", type = "n",         xlab = "Tetrahydrocortisone", ylab = "Pregnanetriol")    for(il in 1:4) {        set <- Cushings$Type==levels(Cushings$Type)[il]        text(Cushings[set, 1], Cushings[set, 2],             labels = as.character(Cushings$Type[set]), col = 2 + il) }    zp <- Z[, 3] - pmax(Z[, 2], Z[, 1])    contour(exp(xp), exp(yp), matrix(zp, np),            add = T, levels = 0, labex = 0)    zp <- Z[, 1] - pmax(Z[, 2], Z[, 3])    contour(exp(xp), exp(yp), matrix(zp, np),            add = T, levels = 0, labex = 0)    invisible()}cush <- log(as.matrix(Cushings[, -3]))tp <- Cushings$Type[1:21, drop = T]cush.lda <- lda(cush[1:21,], tp); predplot(cush.lda, "LDA")cush.qda <- qda(cush[1:21,], tp); predplot(cush.qda, "QDA")predplot(cush.qda, "QDA (predictive)", method = "predictive")predplot(cush.qda, "QDA (debiased)", method = "debiased")Cf <- data.frame(tp = tp,  Tetrahydrocortisone = log(Cushings[1:21, 1]),  Pregnanetriol = log(Cushings[1:21, 2]) )cush.multinom <- multinom(tp ~ Tetrahydrocortisone  + Pregnanetriol, Cf, maxit = 250)xp <- seq(0.6, 4.0, length = 100); np <- length(xp)yp <- seq(-3.25, 2.45, length = 100)cushT <- expand.grid(Tetrahydrocortisone = xp,                     Pregnanetriol = yp)Z <- predict(cush.multinom, cushT, type = "probs")cushplot(xp, yp, Z)library(tree)cush.tr <- tree(tp ~ Tetrahydrocortisone + Pregnanetriol, Cf)plot(cush[, 1], cush[, 2], type = "n",    xlab = "Tetrahydrocortisone", ylab = "Pregnanetriol")for(il in 1:4) { set <- Cushings$Type==levels(Cushings$Type)[il] text(cush[set, 1], cush[set, 2],      labels = as.character(Cushings$Type[set]), col = 2 + il) }par(cex = 1.5); partition.tree(cush.tr, add = T); par(cex = 1)# 12.3  Non-parametric rulesZ <- knn(scale(cush[1:21, ], F, c(3.4, 5.7)),        scale(cushT, F, c(3.4, 5.7)), tp)cushplot(xp, yp, class.ind(Z))Z <- knn(scale(cush[1:21, ], F, c(3.4, 5.7)),        scale(cushT, F, c(3.4, 5.7)), tp, k = 3)cushplot(xp, yp, class.ind(Z))# 12.4  Neural networkspltnn <- function(main, ...) {   plot(Cushings[,1], Cushings[,2], log="xy", type="n",   xlab="Tetrahydrocortisone", ylab = "Pregnanetriol", main=main, ...)   for(il in 1:4) {       set <- Cushings$Type==levels(Cushings$Type)[il]       text(Cushings[set, 1], Cushings[set, 2],          as.character(Cushings$Type[set]), col = 2 + il) }}plt.bndry <- function(size=0, decay=0, ...){   cush.nn <- nnet(cush, tpi, skip=T, softmax=T, size=size,      decay=decay, maxit=1000)   invisible(b1(predict(cush.nn, cushT), ...))}b1 <- function(Z, ...){   zp <- Z[,3] - pmax(Z[,2], Z[,1])   contour(exp(xp), exp(yp), matrix(zp, np),      add=T, levels=0, labex=0, ...)   zp <- Z[,1] - pmax(Z[,3], Z[,2])   contour(exp(xp), exp(yp), matrix(zp, np),      add=T, levels=0, labex=0, ...)}cush <- cush[1:21,]; tpi <- class.ind(tp)# functions pltnn and plt.bndry given in the scriptspar(mfrow = c(2, 2))pltnn("Size = 2")set.seed(1); plt.bndry(size = 2, col = 2)set.seed(3); plt.bndry(size = 2, col = 3)plt.bndry(size = 2, col = 4)pltnn("Size = 2, lambda = 0.001")set.seed(1); plt.bndry(size = 2, decay = 0.001, col = 2)set.seed(2); plt.bndry(size = 2, decay = 0.001, col = 4)pltnn("Size = 2, lambda = 0.01")set.seed(1); plt.bndry(size = 2, decay = 0.01, col = 2)set.seed(2); plt.bndry(size = 2, decay = 0.01, col = 4)pltnn("Size = 5, 20  lambda = 0.01")set.seed(2); plt.bndry(size = 5, decay = 0.01, col = 1)set.seed(2); plt.bndry(size = 20, decay = 0.01, col = 2)# functions pltnn and b1 are in the scriptspltnn("Many local maxima")Z <- matrix(0, nrow(cushT), ncol(tpi))for(iter in 1:20) {   set.seed(iter)   cush.nn <- nnet(cush, tpi, skip = T, softmax = T, size = 3,       decay = 0.01, maxit = 1000, trace = F)   Z <- Z + predict(cush.nn, cushT)# In R replace @ by $ in next line.   cat("final value", format(round(cush.nn$value,3)), "\n")   b1(predict(cush.nn, cushT), col = 2, lwd = 0.5)}pltnn("Averaged")b1(Z, lwd = 3)# 12.5  Support vector machineslibrary(e1071)crabs.svm <- svm(crabs$sp ~ ., data = lcrabs, cost = 100, gamma = 1)table(true = crabs$sp, predicted = predict(crabs.svm, lcrabs))svm(crabs$sp ~ ., data = lcrabs, cost = 100, gamma = 1, cross = 10)# 12.6  Forensic glass exampleset.seed(123)# dump random partition from S-PLUSrand <- c(9, 6, 7, 10, 8, 8, 2, 2, 10, 1, 5, 2, 3, 8, 6, 8, 2, 6, 4,4, 6, 1, 3, 2, 5, 5, 5, 3, 1, 9, 10, 2, 8, 2, 1, 6, 2, 7, 7, 8, 4, 1,9, 5, 5, 1, 4, 6, 8, 6, 5, 7, 9, 2, 1, 1, 10, 9, 7, 6, 4, 7, 4, 8, 9,9, 1, 8, 9, 5, 3, 3, 4, 8, 8, 6, 6, 9, 3, 10, 3, 10, 6, 6, 5, 10, 10,2, 10, 6, 1, 4, 7, 8, 9, 10, 7, 10, 8, 4, 6, 8, 9, 10, 1, 9, 10, 6, 8,4, 10, 8, 2, 10, 2, 3, 10, 1, 5, 9, 4, 4, 8, 2, 7, 6, 4, 8, 10, 4, 8,10, 6, 10, 4, 9, 4, 1, 6, 5, 3, 2, 4, 1, 3, 4, 8, 4, 3, 7, 2, 5, 4, 5,10, 7, 4, 2, 6, 3, 2, 2, 8, 4, 10, 8, 10, 2, 10, 6, 5, 2, 3, 2, 6, 2,7, 7, 8, 9, 7, 10, 8, 6, 7, 9, 7, 10, 3, 2, 7, 5, 6, 1, 3, 9, 7, 7, 1,8, 7, 8, 8, 8, 10, 4, 5, 9, 4, 6, 9, 6, 10, 2)con <- function(...){    print(tab <- table(...))    diag(tab) <- 0    cat("error rate = ",        round(100*sum(tab)/length(list(...)[[1]]), 2), "%\n")    invisible()}CVtest <- function(fitfn, predfn, ...){    res <- fgl$type    for (i in sort(unique(rand))) {        cat("fold ", i, "\n", sep = "")        learn <- fitfn(rand != i, ...)        res[rand == i] <- predfn(learn, rand == i)    }    res}res.multinom <- CVtest(  function(x, ...) multinom(type ~ ., fgl[x, ], ...),  function(obj, x) predict(obj, fgl[x, ], type = "class"),  maxit = 1000, trace = F )con(true = fgl$type, predicted = res.multinom)res.lda <- CVtest(  function(x, ...) lda(type ~ ., fgl[x, ], ...),  function(obj, x) predict(obj, fgl[x, ])$class )con(true = fgl$type, predicted = res.lda)fgl0 <- fgl[ , -10] # drop type{ res <- fgl$type  for (i in sort(unique(rand))) {      cat("fold ", i ,"\n", sep = "")      sub <- rand == i      res[sub] <- knn(fgl0[!sub, ], fgl0[sub, ], fgl$type[!sub],                      k = 1)  }  res } -> res.knn1con(true = fgl$type, predicted = res.knn1)res.lb <- knn(fgl0, fgl0, fgl$type, k = 3, prob = T, use.all = F)table(attr(res.lb, "prob"))library(rpart)res.rpart <- CVtest(  function(x, ...) {    tr <- rpart(type ~ ., fgl[x,], ...)    cp <- tr$cptable    r <- cp[, 4] + cp[, 5]    rmin <- min(seq(along = r)[cp[, 4] < min(r)])    cp0 <- cp[rmin, 1]    cat("size chosen was", cp[rmin, 2] + 1, "\n")    prune(tr, cp = 1.01*cp0)  },  function(obj, x)    predict(obj, fgl[x, ], type = "class"),  cp = 0.001)con(true = fgl$type, predicted = res.rpart)fgl1 <- fglfgl1[1:9] <- lapply(fgl[, 1:9], function(x)               {r <- range(x); (x - r[1])/diff(r)})CVnn2 <- function(formula, data,                  size = rep(6,2), lambda = c(0.001, 0.01),                  nreps = 1, nifold = 5, verbose = 99, ...){    CVnn1 <- function(formula, data, nreps=1, ri, verbose,  ...)    {        truth <- data[,deparse(formula[[2]])]        res <-  matrix(0, nrow(data), length(levels(truth)))        if(verbose > 20) cat("  inner fold")        for (i in sort(unique(ri))) {            if(verbose > 20) cat(" ", i,  sep="")            for(rep in 1:nreps) {                learn <- nnet(formula, data[ri !=i,], trace = F, ...)                res[ri == i,] <- res[ri == i,] +                    predict(learn, data[ri == i,])            }        }        if(verbose > 20) cat("\n")        sum(as.numeric(truth) != max.col(res/nreps))    }    truth <- data[,deparse(formula[[2]])]    res <-  matrix(0, nrow(data), length(levels(truth)))    choice <- numeric(length(lambda))    for (i in sort(unique(rand))) {        if(verbose > 0) cat("fold ", i,"\n", sep="")        ri <- sample(nifold, sum(rand!=i), replace=T)        for(j in seq(along=lambda)) {            if(verbose > 10)                cat("  size =", size[j], "decay =", lambda[j], "\n")            choice[j] <- CVnn1(formula, data[rand != i,], nreps=nreps,                               ri=ri, size=size[j], decay=lambda[j],                               verbose=verbose, ...)        }        decay <- lambda[which.is.max(-choice)]        csize <- size[which.is.max(-choice)]        if(verbose > 5) cat("  #errors:", choice, "  ") #        if(verbose > 1) cat("chosen size = ", csize,                            " decay = ", decay, "\n", sep="")        for(rep in 1:nreps) {            learn <- nnet(formula, data[rand != i,], trace=F,                          size=csize, decay=decay, ...)            res[rand == i,] <- res[rand == i,] +                predict(learn, data[rand == i,])        }    }    factor(levels(truth)[max.col(res/nreps)], levels = levels(truth))}if(F) { # only run this if you have time to waitres.nn2 <- CVnn2(type ~ ., fgl1, skip = T, maxit = 500, nreps = 10)con(true = fgl$type, predicted = res.nn2)}res.svm <- CVtest(  function(x, ...) svm(type ~ ., fgl[x, ], ...),  function(obj, x) predict(obj, fgl[x, ]),  cost = 100, gamma = 1 )con(true = fgl$type, predicted = res.svm)svm(type ~ ., data = fgl, cost = 100, gamma = 1, cross = 10)cd0 <- lvqinit(fgl0, fgl$type, prior = rep(1, 6)/6, k = 3)cd1 <- olvq1(fgl0, fgl$type, cd0)con(true = fgl$type, predicted = lvqtest(cd1, fgl0))CV.lvq <- function(){    res <- fgl$type    for(i in sort(unique(rand))) {        cat("doing fold", i, "\n")        cd0 <- lvqinit(fgl0[rand != i,], fgl$type[rand != i],                       prior = rep(1, 6)/6, k = 3)        cd1 <- olvq1(fgl0[rand != i,], fgl$type[rand != i], cd0)        cd1 <- lvq3(fgl0[rand != i,], fgl$type[rand != i],                    cd1, niter = 10000)        res[rand == i] <- lvqtest(cd1, fgl0[rand == i, ])    }    res}con(true = fgl$type, predicted = CV.lvq())# 12.7  Calibration plotsCVprobs <- function(fitfn, predfn, ...){    res <- matrix(, 214, 6)    for (i in sort(unique(rand))) {        cat("fold ", i, "\n", sep = "")        learn <- fitfn(rand != i, ...)        res[rand == i, ] <- predfn(learn, rand == i)    }    res}probs.multinom <- CVprobs(  function(x, ...) multinom(type ~ ., fgl[x, ], ...),  function(obj, x) predict(obj, fgl[x, ], type = "probs"),  maxit = 1000, trace = F )probs.yes <- as.vector(class.ind(fgl$type))probs <- as.vector(probs.multinom)par(pty = "s")plot(c(0, 1), c(0, 1), type = "n", xlab = "predicted probability",     ylab = "", xaxs = "i", yaxs = "i", las = 1)rug(probs[probs.yes == 0], 0.02, side = 1, lwd = 0.5)rug(probs[probs.yes == 1], 0.02, side = 3, lwd = 0.5)abline(0, 1)newp <- seq(0, 1, length = 100)lines(newp, predict(loess(probs.yes ~ probs, span = 1), newp))# End of ch12

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品美日韩| 欧美性三三影院| 91老师片黄在线观看| 91麻豆国产香蕉久久精品| 在线国产亚洲欧美| 日韩免费在线观看| 国产精品国产三级国产a| 亚洲福利视频一区二区| 极品少妇xxxx精品少妇偷拍| 成人免费毛片a| 欧美三级三级三级| 久久先锋资源网| 亚洲欧洲99久久| 蜜臀av性久久久久蜜臀aⅴ四虎| 国产成人aaa| 欧美日韩精品免费| 国产精品色哟哟网站| 五月天婷婷综合| 成人美女视频在线观看| 欧美另类videos死尸| 国产女人aaa级久久久级| 亚洲国产精品天堂| 成人午夜免费电影| 4hu四虎永久在线影院成人| 中文字幕第一区综合| 五月天亚洲精品| 不卡的av在线播放| 欧美电影精品一区二区| 亚洲精品乱码久久久久久| 精品伊人久久久久7777人| 91欧美激情一区二区三区成人| 日韩亚洲欧美在线| 一区二区三区波多野结衣在线观看| 五月天欧美精品| 91在线观看成人| 久久免费美女视频| 日韩成人免费电影| 一本久久a久久免费精品不卡| 日韩欧美二区三区| 一区二区激情小说| 成人开心网精品视频| 精品奇米国产一区二区三区| 一区二区三区中文字幕在线观看| 国产精品一级在线| 日韩午夜av电影| 亚洲国产精品久久久男人的天堂| 成人免费毛片高清视频| 欧美精品一区二区精品网| 五月婷婷综合在线| 在线这里只有精品| 日韩一区日韩二区| 国产成人一区二区精品非洲| 日韩一区二区三区免费看| 亚洲成人免费视| 色狠狠av一区二区三区| 国产精品人成在线观看免费| 免费成人av在线播放| 欧美另类久久久品| 亚洲成人高清在线| 欧美亚洲综合色| 一区二区高清免费观看影视大全| 99在线热播精品免费| 国产午夜精品一区二区三区嫩草| 久久丁香综合五月国产三级网站| 91麻豆精品国产91久久久资源速度| 亚洲最色的网站| 91行情网站电视在线观看高清版| 亚洲国产精品传媒在线观看| 国产风韵犹存在线视精品| 久久久无码精品亚洲日韩按摩| 免费看欧美美女黄的网站| 日韩限制级电影在线观看| 日本亚洲欧美天堂免费| 欧美一区二区三区人| 日韩电影一区二区三区四区| 欧美人妇做爰xxxⅹ性高电影| 亚洲国产美女搞黄色| 欧美在线高清视频| 亚洲国产美女搞黄色| 在线播放视频一区| 日本在线不卡视频| 日韩精品最新网址| 国产真实乱偷精品视频免| 欧美本精品男人aⅴ天堂| 久久国产福利国产秒拍| 久久女同精品一区二区| 成人毛片老司机大片| 亚洲摸摸操操av| 91美女福利视频| 亚洲图片有声小说| 日韩三级免费观看| 国产成人精品三级麻豆| 国产精品久久久一本精品 | 欧美日韩一区不卡| 天天综合色天天综合| 日韩视频在线永久播放| 国产一区二区精品久久91| 国产色婷婷亚洲99精品小说| eeuss鲁片一区二区三区在线观看 eeuss鲁片一区二区三区在线看 | 2023国产一二三区日本精品2022| 国产激情视频一区二区在线观看| 国产精品乱人伦一区二区| 色综合中文字幕国产 | 麻豆精品视频在线观看| 国产亚洲精品aa午夜观看| 成人一区二区三区视频 | 欧美视频日韩视频| 蜜臀精品久久久久久蜜臀| 久久久久久久久蜜桃| 99精品久久久久久| 亚洲二区在线视频| 久久婷婷综合激情| 99久久精品久久久久久清纯| 亚洲第一综合色| 久久精品网站免费观看| 在线视频国内自拍亚洲视频| 蜜桃av一区二区三区电影| 国产精品久久久99| 欧美肥胖老妇做爰| 国产高清不卡二三区| 亚洲午夜三级在线| 国产视频一区二区在线| 欧洲另类一二三四区| 激情综合色丁香一区二区| 综合自拍亚洲综合图不卡区| 91精品在线免费观看| 成人免费三级在线| 麻豆成人91精品二区三区| 亚洲欧美日韩一区| 久久久久久久久免费| 欧美性一区二区| 国产成人精品网址| 日本成人在线网站| 亚洲欧美日韩国产成人精品影院 | 久久精品国产99久久6| 亚洲三级免费观看| xnxx国产精品| 欧美中文字幕不卡| 成人av资源在线观看| 日本aⅴ精品一区二区三区| 国产精品视频麻豆| 精品国产免费视频| 欧美日韩aaa| 97久久超碰国产精品电影| 久国产精品韩国三级视频| 亚洲尤物在线视频观看| 国产精品婷婷午夜在线观看| 欧美一级欧美三级在线观看| 色系网站成人免费| 国产成人精品免费一区二区| 日韩电影在线看| 一区二区三区国产豹纹内裤在线 | 色88888久久久久久影院野外| 国产九九视频一区二区三区| 免费高清视频精品| 亚洲丶国产丶欧美一区二区三区| 国产精品国产自产拍高清av王其| 精品国产精品网麻豆系列| 欧美精品欧美精品系列| 一本大道久久精品懂色aⅴ| 国产成人在线视频网址| 国产在线不卡一区| 裸体在线国模精品偷拍| 日韩成人伦理电影在线观看| 亚洲在线视频一区| 亚洲精品日韩专区silk| 中文字幕欧美一| 国产亚洲欧洲997久久综合| 欧美va亚洲va在线观看蝴蝶网| 欧美精品777| 欧美精品一二三四| 欧美乱妇一区二区三区不卡视频 | 性做久久久久久久久| 一区二区三区欧美亚洲| 亚洲视频香蕉人妖| 国产精品久久久久9999吃药| 国产欧美综合在线| 日本一二三四高清不卡| 国产视频一区二区三区在线观看| 欧美精品一区二区三区视频| 精品国产一区a| 精品国产乱码久久久久久牛牛| 4438x亚洲最大成人网| 制服丝袜亚洲播放| 欧美一区二区三区啪啪| 欧美一区二区黄| 欧美一区二区成人6969| 日韩欧美在线网站| 精品日本一线二线三线不卡 | 国产福利精品一区| 国产ts人妖一区二区| 成人福利电影精品一区二区在线观看| 国产精品亚洲а∨天堂免在线| 国产黄人亚洲片| 波多野结衣中文字幕一区二区三区| 国产成人精品一区二| av爱爱亚洲一区| 欧日韩精品视频| 91麻豆精品国产自产在线 | 久久99精品视频|