亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? ch14.r

?? 本程序是基于linux系統下c++代碼
?? R
字號:
#-*- R -*-## Script from Fourth Edition of `Modern Applied Statistics with S'# Chapter 14   Time Serieslibrary(MASS)postscript(file="ch14.ps", width=8, height=6, pointsize=9)options(width=65, digits=5, echo = T)lhdeaths#tspar(deaths)tsp(deaths)start(deaths)end(deaths)frequency(deaths)cycle(deaths)ts.plot(lh)ts.plot(deaths, mdeaths, fdeaths,        lty = c(1, 3, 4), xlab = "year", ylab = "deaths")aggregate(deaths, 4, sum)aggregate(deaths, 1, mean)# 14.1  Second-order summariesacf(lh)acf(lh, type = "covariance")acf(deaths)acf(ts.union(mdeaths, fdeaths))par(mfrow = c(2, 2))spectrum(lh)spectrum(deaths)par(mfrow = c(2, 2))spectrum(lh)spectrum(lh, spans = 3)spectrum(lh, spans = c(3, 3))spectrum(lh, spans = c(3, 5))spectrum(deaths)spectrum(deaths, spans = c(3, 3))spectrum(deaths, spans = c(3, 5))spectrum(deaths, spans = c(5, 7))par(mfrow = c(1, 2))cpgram(lh)cpgram(deaths)par(mfrow = c(1, 1))# 14.2  ARIMA models# ts.sim <- arima.sim(list(order = c(1,1,0), ar = 0.7), n = 200)acf(lh, type = "partial")acf(deaths, type = "partial")lh.ar1 <- ar(lh, F, 1)cpgram(lh.ar1$resid, main = "AR(1) fit to lh")lh.ar <- ar(lh, order.max = 9)lh.ar$orderlh.ar$aiccpgram(lh.ar$resid, main = "AR(3) fit to lh")(lh.arima1 <- arima(lh, order = c(1,0,0)))tsdiag(lh.arima1)(lh.arima3 <- arima(lh, order = c(3,0,0)))tsdiag(lh.arima3)(lh.arima11 <- arima(lh, order = c(1,0,1)))lh.fore <- predict(lh.arima3, 12)ts.plot(lh, lh.fore$pred, lh.fore$pred + 2*lh.fore$se,        lh.fore$pred - 2*lh.fore$se, lty = c(1,2,3,3))# 14.3  Seasonalitydeaths.stl <- stl(deaths, "periodic")dsd <-  deaths.stl$time.series[, "trend"] +    deaths.stl$time.series[, "remainder"]#ts.plot(deaths, deaths.stl$sea, deaths.stl$rem)ts.plot(deaths, deaths.stl$time.series[, "seasonal"], dsd,        gpars = list(lty = c(1, 3, 2)))par(mfrow = c(2, 3))#dsd <- deaths.stl$remts.plot(dsd)acf(dsd)acf(dsd, type = "partial")spectrum(dsd, span = c(3, 3))cpgram(dsd)dsd.ar <- ar(dsd)dsd.ar$orderdsd.ar$aicdsd.ar$arcpgram(dsd.ar$resid, main = "AR(1) residuals")par(mfrow = c(1, 1))deaths.diff <- diff(deaths, 12)acf(deaths.diff, 30)acf(deaths.diff, 30, type = "partial")ar(deaths.diff)# this suggests the seasonal effect is still present.(deaths.arima1 <- arima(deaths, order = c(2,0,0),     seasonal = list(order = c(0,1,0), period = 12)) )tsdiag(deaths.arima1, gof.lag = 30)# suggests need a seasonal AR term(deaths.arima2 <- arima(deaths, order = c(2,0,0),     list(order = c(1,0,0), period = 12)) )tsdiag(deaths.arima2, gof.lag = 30)cpgram(deaths.arima2$resid)(deaths.arima3 <- arima(deaths, order = c(2,0,0),    list(order = c(1,1,0), period = 12)) )tsdiag(deaths.arima3, gof.lag = 30)par(mfrow = c(3, 1))nott <- window(nottem, end = c(1936, 12))ts.plot(nott)nott.stl <- stl(nott, "period")ts.plot(nott.stl$time.series[, c("remainder", "seasonal")],        gpars = list(ylim  =  c(-15, 15), lty = c(1, 3)))nott.stl <- stl(nott, 5)ts.plot(nott.stl$time.series[, c("remainder", "seasonal")],        ylim  =  c(-15, 15), lty = c(1, 3))par(mfrow = c(1, 1))boxplot(split(nott, cycle(nott)), names = month.abb)nott[110] <- 35nott.stl <- stl(nott, "period")nott1 <- nott.stl$time.series[, "trend"] + nott.stl$time.series[, "remainder"]acf(nott1)acf(nott1, type = "partial")cpgram(nott1)ar(nott1)$aicplot(0:23, ar(nott1)$aic, xlab = "order", ylab = "AIC",     main = "AIC for AR(p)")(nott1.ar1 <- arima(nott1, order = c(1,0,0)))nott1.fore <- predict(nott1.ar1, 36)nott1.fore$pred <- nott1.fore$pred +    as.vector(nott.stl$time.series[1:36, "seasonal"])ts.plot(window(nottem, 1937), nott1.fore$pred,        nott1.fore$pred+2*nott1.fore$se,        nott1.fore$pred-2*nott1.fore$se, lty = c(3, 1, 2, 2))title("via Seasonal Decomposition")acf(diff(nott,12), 30)acf(diff(nott,12), 30, type = "partial")cpgram(diff(nott, 12))(nott.arima1 <- arima(nott, order = c(1,0,0),     list(order = c(2,1,0), period = 12)) )tsdiag(nott.arima1, gof.lag = 30)(nott.arima2 <- arima(nott, order = c(0,0,2),      list(order = c(0,1,2), period = 12)) )tsdiag(nott.arima2, gof.lag = 30)(nott.arima3 <- arima(nott, order = c(1,0,0),      list(order = c(0,1,2), period = 12)) )tsdiag(nott.arima3, gof.lag = 30)nott.fore <- predict(nott.arima3, 36)ts.plot(window(nottem, 1937), nott.fore$pred,        nott.fore$pred+2*nott.fore$se,        nott.fore$pred-2*nott.fore$se, lty = c(3, 1, 2, 2))title("via Seasonal ARIMA model")# 14.6  Regression with autocorrelated errorsattach(beav1)beav1$hours <- 24*(day-346) + trunc(time/100) + (time%%100)/60detach()attach(beav2)beav2$hours <- 24*(day-307) + trunc(time/100) + (time%%100)/60detach()par(mfrow = c(2, 2))plot(beav1$hours, beav1$temp, type = "l", xlab = "time",     ylab = "temperature", main = "Beaver 1")usr <- par("usr"); usr[3:4] <- c(-0.2, 8); par(usr = usr)lines(beav1$hours, beav1$activ, type = "s", lty = 2)plot(beav2$hours, beav2$temp, type = "l", xlab = "time",     ylab = "temperature", main = "Beaver 2")usr <- par("usr"); usr[3:4] <- c(-0.2, 8); par(usr = usr)lines(beav2$hours, beav2$activ, type = "s", lty = 2)attach(beav2)temp2 <- ts(temp, start = 8+2/3, frequency = 6)activ2 <- ts(activ, start = 8+2/3, frequency = 6)acf(temp2[activ2 == 0])acf(temp2[activ2 == 1]) # also look at PACFsacf(temp2[activ2 == 0], type = "partial")acf(temp2[activ2 == 1], type = "partial")ar(temp2[activ2 == 0])ar(temp2[activ2 == 1])par(mfrow = c(1, 1))detach()rm(temp2, activ2)library(nlme)beav2.gls <- gls(temp ~ activ, data = beav2,                 corr = corAR1(0.8), method = "ML")summary(beav2.gls)summary(update(beav2.gls, subset = 6:100))arima(beav2$temp, c(1,0,0), xreg = beav2$activ)attach(beav1)temp1 <- ts(c(temp[1:82], NA, temp[83:114]), start = 9.5, frequency = 6)activ1 <- ts(c(activ[1:82], NA, activ[83:114]), start = 9.5, frequency = 6)acf(temp1[1:53])acf(temp1[1:53], type = "partial")ar(temp1[1:53])act <- c(rep(0, 10), activ1)beav1b <- data.frame(Time = time(temp1), temp = as.vector(temp1),           act = act[11:125], act1 = act[10:124],           act2 = act[9:123], act3 = act[8:122])detach()rm(temp1, activ1)summary(gls(temp ~ act + act1 + act2 + act3,            data = beav1b, na.action = na.omit,            corr = corCAR1(0.82^6, ~Time), method = "ML"))arima(beav1b$temp, c(1, 0, 0), xreg = beav1b[, 3:6])# 14.6  Models for financial time seriesplot(SP500, type = "l", xlab = "", ylab = "returns (%)", xaxt = "n", las = 1)axis(1, at = c(0, 254, 507, 761, 1014, 1266, 1518, 1772, 2025, 2277,        2529, 2781), lab = 1990:2001)plot(density(SP500, width = "sj", n = 256), type = "l", xlab = "", ylab = "")par(pty = "s")qqnorm(SP500)qqline(SP500)if(F) {module(garch)summary(garch(SP500 ~ 1, ~garch(1,1)))fit <- garch(SP500 ~ 1, ~garch(1,1), cond.dist = "t")summary(fit)plot(fit)summary(garch(SP500 ~ 1, ~egarch(1,1), cond.dist = "t", leverage = T))}library(tseries)summary(garch(x = SP500 - median(SP500), order = c(1, 1)))# End of ch14

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产一区二区三区高清播放| 精品女同一区二区| 国产iv一区二区三区| 麻豆久久久久久久| 国产精品久久99| 欧美精品自拍偷拍| 欧美一区二区精品在线| 555www色欧美视频| 日韩美女在线视频| 久久嫩草精品久久久精品一| 国产亚洲欧美在线| 国产欧美日韩在线观看| 国产精品国产三级国产aⅴ中文| 亚洲国产成人午夜在线一区| 国产精品成人免费精品自在线观看| 国产午夜精品一区二区三区四区 | 国产精品网曝门| 亚洲视频你懂的| 性欧美大战久久久久久久久| 蜜乳av一区二区三区| 国产一区视频在线看| 91天堂素人约啪| 欧美精品高清视频| 国产女人水真多18毛片18精品视频| 国产精品激情偷乱一区二区∴| 一区二区三区四区在线播放| 美腿丝袜亚洲一区| gogogo免费视频观看亚洲一| 欧美性高清videossexo| 精品毛片乱码1区2区3区| 中文字幕成人网| 日韩avvvv在线播放| 国产不卡视频一区二区三区| 欧美色图天堂网| 久久久久免费观看| 午夜精品免费在线观看| 成人夜色视频网站在线观看| 欧美日韩三级一区| 亚洲人一二三区| 精品一区二区三区的国产在线播放 | 日本精品一区二区三区高清| 日韩一级片网站| 亚洲色欲色欲www在线观看| 午夜伦欧美伦电影理论片| 成人小视频免费在线观看| 91精品欧美久久久久久动漫 | 国产精品久久久久久久裸模| 日韩综合一区二区| 成人a级免费电影| 91精品国产一区二区三区蜜臀 | 97精品国产97久久久久久久久久久久| 欧美精品v日韩精品v韩国精品v| 国产精品污网站| 精品亚洲成a人| 精品视频1区2区3区| 亚洲欧洲精品一区二区三区| 国产一区二区不卡在线| 欧美精品免费视频| 亚洲制服丝袜av| 91社区在线播放| **性色生活片久久毛片| 国产精品一区在线观看你懂的| 欧美日韩日日夜夜| 成人激情黄色小说| 国产高清不卡二三区| 欧美一区二区三区色| 婷婷综合五月天| 欧美性淫爽ww久久久久无| 亚洲精品国产视频| 91麻豆自制传媒国产之光| 国产精品三级视频| 不卡av免费在线观看| 国产精品拍天天在线| 国产伦精品一区二区三区免费| 日韩午夜激情视频| 精品一区二区三区在线观看国产 | 天堂蜜桃91精品| 欧美日韩综合在线| 五月天婷婷综合| 日韩一级高清毛片| 久久99精品久久久久久国产越南| 日韩欧美视频一区| 国产成人在线视频网站| 国产精品久久夜| 一本久久精品一区二区| 亚洲一区二区三区视频在线| 欧美怡红院视频| 日本网站在线观看一区二区三区| 91精品国产综合久久精品图片| 日韩av电影天堂| 国产亚洲欧美激情| 99这里只有精品| 性久久久久久久久久久久| 日韩一区二区视频| 国产a精品视频| 一区二区三区成人| 欧美一二三四区在线| 国产精品自在欧美一区| 亚洲同性同志一二三专区| 91精品欧美综合在线观看最新 | 亚洲国产欧美另类丝袜| 日韩三区在线观看| www.在线成人| 日本欧美在线观看| 中文字幕av一区二区三区| 欧美视频一区二区三区四区| 毛片不卡一区二区| 亚洲欧美自拍偷拍| 欧美成人国产一区二区| 北岛玲一区二区三区四区| 男女视频一区二区| 亚洲欧洲中文日韩久久av乱码| 在线不卡一区二区| 成人午夜免费电影| 免费在线看一区| 亚洲精品免费在线观看| xfplay精品久久| 欧美三级电影网| 成人黄动漫网站免费app| 视频一区中文字幕| 一区二区三区在线观看动漫 | 91女厕偷拍女厕偷拍高清| 青娱乐精品视频在线| 亚洲猫色日本管| 久久久精品影视| 欧美一区三区四区| 在线亚洲高清视频| 成人一道本在线| 国产麻豆欧美日韩一区| 日韩精品免费视频人成| 夜夜精品浪潮av一区二区三区| 日本一区二区三区国色天香 | 亚洲人成亚洲人成在线观看图片| a美女胸又www黄视频久久| 久久成人久久爱| 亚洲综合免费观看高清在线观看| 久久影音资源网| 日韩一区二区免费电影| 91麻豆精品国产91久久久久久久久| 一本色道久久综合精品竹菊| 成人av电影在线网| 成人做爰69片免费看网站| 国产真实乱对白精彩久久| 裸体一区二区三区| 日本欧美肥老太交大片| 五月婷婷另类国产| 午夜av区久久| 日韩成人免费在线| 亚洲成人午夜影院| 日韩成人免费电影| 日韩精品久久理论片| 日韩精品午夜视频| 麻豆一区二区三区| 国产一区二区三区黄视频| 国产一二三精品| 国产成人综合精品三级| 国产成人99久久亚洲综合精品| 国产成人免费在线观看不卡| 国产suv精品一区二区三区| av一二三不卡影片| 欧洲精品中文字幕| 欧美精品1区2区3区| 欧美一区二区免费| 国产欧美一区在线| 伊人一区二区三区| 亚瑟在线精品视频| 韩国欧美国产1区| 国产91丝袜在线播放0| 99久久99久久久精品齐齐| 色哟哟精品一区| 在线成人午夜影院| 欧美tk—视频vk| 国产精品免费久久久久| 亚洲蜜臀av乱码久久精品| 亚洲电影视频在线| 久久国产精品99久久久久久老狼| 国产综合色在线视频区| 99热精品国产| 欧美日韩不卡一区| 久久精品男人天堂av| 亚洲精品久久久蜜桃| 日本成人在线电影网| 成人手机电影网| 欧美老年两性高潮| 久久精品一区二区| 亚洲国产sm捆绑调教视频| 狠狠色狠狠色综合系列| 91老师片黄在线观看| 精品国产亚洲在线| 一区二区三区在线免费视频| 久久国产精品第一页| 日本精品一区二区三区高清| 久久夜色精品一区| 亚洲成在线观看| 成人激情校园春色| 日韩一区二区三区免费看| 国产精品国产三级国产a| 美女在线一区二区| 色噜噜狠狠色综合中国| 中文天堂在线一区|