?? ch07.r
字號:
#-*- R -*-## Script from Fourth Edition of `Modern Applied Statistics with S'# Chapter 7 Generalized Linear Modelslibrary(MASS)options(echo = T,width=65, digits=5, height=9999)postscript(file="ch07.ps", width=8, height=6, pointsize=9)options(contrasts = c("contr.treatment", "contr.poly"))ax.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt), family = gaussian, data = anorexia)summary(ax.1)# 7.2 Binomial dataoptions(contrasts = c("contr.treatment", "contr.poly"))ldose <- rep(0:5, 2)numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)sex <- factor(rep(c("M", "F"), c(6, 6)))SF <- cbind(numdead, numalive = 20 - numdead)budworm.lg <- glm(SF ~ sex*ldose, family = binomial)summary(budworm.lg, cor = F)plot(c(1,32), c(0,1), type = "n", xlab = "dose", ylab = "prob", log = "x")text(2^ldose, numdead/20, labels = as.character(sex))ld <- seq(0, 5, 0.1)lines(2^ld, predict(budworm.lg, data.frame(ldose = ld, sex = factor(rep("M", length(ld)), levels = levels(sex))), type = "response"), col = 3)lines(2^ld, predict(budworm.lg, data.frame(ldose = ld, sex = factor(rep("F", length(ld)), levels = levels(sex))), type = "response"), lty = 2, col = 2)budworm.lgA <- update(budworm.lg, . ~ sex * I(ldose - 3))summary(budworm.lgA, cor = F)$coefficientsanova(update(budworm.lg, . ~ . + sex * I(ldose^2)), test = "Chisq")budworm.lg0 <- glm(SF ~ sex + ldose - 1, family = binomial)summary(budworm.lg0, cor = F)$coefficientsdose.p(budworm.lg0, cf = c(1,3), p = 1:3/4)dose.p(update(budworm.lg0, family = binomial(link = probit)), cf = c(1, 3), p = 1:3/4)options(contrasts = c("contr.treatment", "contr.poly"))attach(birthwt)race <- factor(race, labels = c("white", "black", "other"))table(ptl)ptd <- factor(ptl > 0)table(ftv)ftv <- factor(ftv)levels(ftv)[-(1:2)] <- "2+"table(ftv) # as a checkbwt <- data.frame(low = factor(low), age, lwt, race, smoke = (smoke > 0), ptd, ht = (ht > 0), ui = (ui > 0), ftv)detach(); rm(race, ptd, ftv)birthwt.glm <- glm(low ~ ., family = binomial, data = bwt)summary(birthwt.glm, cor = F)birthwt.step <- stepAIC(birthwt.glm, trace = F)birthwt.step$anovabirthwt.step2 <- stepAIC(birthwt.glm, ~ .^2 + I(scale(age)^2) + I(scale(lwt)^2), trace = F)birthwt.step2$anovasummary(birthwt.step2, cor = F)$coeftable(bwt$low, predict(birthwt.step2) > 0)## R has a similar gam() in package gam and a different gam() in package mgcvlibrary(gam)attach(bwt)age1 <- age*(ftv=="1"); age2 <- age*(ftv=="2+")birthwt.gam <- gam(low ~ s(age) + s(lwt) + smoke + ptd + ht + ui + ftv + s(age1) + s(age2) + smoke:ui, binomial, bwt, bf.maxit=25)summary(birthwt.gam)table(low, predict(birthwt.gam) > 0)par(mfrow = c(2, 2))if(interactive()) plot(birthwt.gam, ask = TRUE, se = TRUE)par(mfrow = c(1, 1))detach()library(mgcv)attach(bwt)age1 <- age*(ftv=="1"); age2 <- age*(ftv=="2+")(birthwt.gam <- gam(low ~ s(age) + s(lwt) + smoke + ptd + ht + ui + ftv + s(age1) + s(age2) + smoke:ui, binomial, bwt))table(low, predict(birthwt.gam) > 0)par(mfrow = c(2, 2))plot(birthwt.gam, se = TRUE)par(mfrow = c(1, 1))detach()# 7.3 Poisson modelsnames(housing)house.glm0 <- glm(Freq ~ Infl*Type*Cont + Sat, family = poisson, data = housing)summary(house.glm0, cor = F)addterm(house.glm0, ~. + Sat:(Infl+Type+Cont), test = "Chisq")house.glm1 <- update(house.glm0, . ~ . + Sat:(Infl+Type+Cont))summary(house.glm1, cor = F)1 - pchisq(deviance(house.glm1), house.glm1$df.resid)dropterm(house.glm1, test = "Chisq")addterm(house.glm1, ~. + Sat:(Infl+Type+Cont)^2, test = "Chisq")hnames <- lapply(housing[, -5], levels) # omit Freqhouse.pm <- predict(house.glm1, expand.grid(hnames), type = "response") # poisson meanshouse.pm <- matrix(house.pm, ncol = 3, byrow = T, dimnames = list(NULL, hnames[[1]]))house.pr <- house.pm/drop(house.pm %*% rep(1, 3))cbind(expand.grid(hnames[-1]), round(house.pr, 2))loglm(Freq ~ Infl*Type*Cont + Sat*(Infl+Type+Cont), data = housing)library(nnet)(house.mult <- multinom(Sat ~ Infl + Type + Cont, weights = Freq, data = housing))house.mult2 <- multinom(Sat ~ Infl*Type*Cont, weights = Freq, data = housing)anova(house.mult, house.mult2, test = "none")house.pm <- predict(house.mult, expand.grid(hnames[-1]), type = "probs")cbind(expand.grid(hnames[-1]), round(house.pm, 2))house.cpr <- apply(house.pr, 1, cumsum)logit <- function(x) log(x/(1-x))house.ld <- logit(house.cpr[2, ]) - logit(house.cpr[1, ])sort(drop(house.ld))mean(.Last.value)house.plr <- polr(Sat ~ Infl + Type + Cont, data = housing, weights = Freq)house.plrhouse.pr1 <- predict(house.plr, expand.grid(hnames[-1]), type = "probs")cbind(expand.grid(hnames[-1]), round(house.pr1, 2))Fr <- matrix(housing$Freq, ncol = 3, byrow = T)2 * sum(Fr * log(house.pr/house.pr1))house.plr2 <- stepAIC(house.plr, ~.^2)house.plr2$anova# 7.4 A negative binomial familyglm(Days ~ .^4, family = poisson, data = quine)quine.nb <- glm(Days ~ .^4, family = negative.binomial(2), data = quine)quine.nb0 <- update(quine.nb, . ~ Sex/(Age + Eth*Lrn))anova(quine.nb0, quine.nb, test = "Chisq")quine.nb <- glm.nb(Days ~ .^4, data = quine)quine.nb2 <- stepAIC(quine.nb)quine.nb2$anovadropterm(quine.nb2, test = "Chisq")quine.nb3 <- update(quine.nb2, . ~ . - Eth:Age:Lrn - Sex:Age:Lrn)anova(quine.nb2, quine.nb3)c(theta = quine.nb2$theta, SE = quine.nb2$SE)par(mfrow = c(2,2), pty = "m")rs <- resid(quine.nb2, type = "deviance")plot(predict(quine.nb2), rs, xlab = "Linear predictors", ylab = "Deviance residuals")abline(h = 0, lty = 2)qqnorm(rs, ylab = "Deviance residuals")qqline(rs)par(mfrow = c(1,1))# End of ch07
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -