亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? nnvalid.m

?? matlab實現神經網絡程序集合
?? M
字號:
function [Yhat,PI]=nnvalid(method,NetDef,NN,W1,W2,par1,par2,par3)
%  NNVALID
%  ------- 
%          Validate a neural network input-output model of a dynamic system.
%          I.e., a network model which has been generated by NNARX, NNRARX,
%          NNARMAX1+2, NNRARMX1+2, or NNOE.
%
%          The following plots are produced:
%          o  Observed output together with predicted output
%          o  Prediction error
%          o  Auto-correlation function of prediction error and cross-
%             correlation between prediction error and input
%          o  A histogram showing the distribution of the prediction errors
%          o  Coefficients of extracted linear models
%
%  Call: 
%  Network generated by NNARX (or NNRARX):
%           [Yhat,NSSE] = nnvalid('nnarx',NetDef,NN,W1,W2,Y,U)
%
%  Network generated by NNARMAX1 (or NNRARMAX1):
%           [Yhat,NSSE] = nnvalid('nnarmax1',NetDef,NN,W1,W2,C,Y,U)
%
%  Network generated by NNARMAX2 (or NNRARMX2):
%           [Yhat,NSSE] = nnvalid('nnarmax2',NetDef,NN,W1,W2,Y,U)
%
%  Network generated by NNOE:
%           [Yhat,NSSE] = nnvalid('nnoe',NetDef,NN,W1,W2,Y,U)
%
%  Network generated by NNARXM:
%           [Yhat,NSSE] = nnvalid('nnarxm',NetDef,NN,W1,W2,Gamma,Y,U)
%
%  NB: For time-series, U is left out!
% 
%  Programmed by : Magnus Norgaard, IAU/IMM, Technical University of Denmark
%  LastEditDate  : June 16, 1997


% >>>>>>>>>>>>>>>>>>>>>>>>>>>>      GET PARAMETERS     <<<<<<<<<<<<<<<<<<<<<<<<<<<< 
skip = 1;
if strcmp(method,'nnarx') | strcmp(method,'nnrarx'),
  mflag=1;
  Y=par1;
  if exist('par2') U=par2; end
elseif strcmp(method,'nnarmax1') | strcmp(method,'nnrarmx1'),
  mflag=2;
  C=par1;
  Y=par2; 
  if exist('par3') U=par3; end
elseif strcmp(method,'nnarmax2') | strcmp(method,'nnrarmx2'),
  mflag=3;
  Y=par1; 
  if exist('par2') U=par2; end
elseif strcmp(method,'nnoe'),
  mflag=4;
  Y=par1;
  U=par2;
elseif strcmp(method,'nnarxm'),
  mflag=5;
  Gamma = par1;
  Y = par2;
  if exist('par3') U=par3; end
else
  disp('Unknown method!!!!!!!!');
  break
end


% >>>>>>>>>>>>>>>>>>>>>>>>>>>>     INITIALIZATIONS     <<<<<<<<<<<<<<<<<<<<<<<<<<<< 
Ndat     = length(Y);                   % # of data
na = NN(1);

% ---------- NNARX model ----------
if mflag==1 | mflag==4,
  if length(NN)==1                      % nnar model
    nb = 0;
    nk = 0;
    nu = 0;
  else                                  % nnarx or nnoe model
    [nu,N] = size(U); 
    nb = NN(2:1+nu); 
    nk = NN(2+nu:1+2*nu);
  end
  nc = 0;

% --------- NNARMAX1 model --------
elseif mflag==2 | mflag==3,
  if length(NN)==2                      % nnarma model
    nc     = NN(2);
    nb     = 0;
    nk     = 0;
    nu     = 0;
  else                                  % nnarmax model
    [nu,Ndat]= size(U); 
    nb     = NN(2:1+nu);
    nc     = NN(2+nu);
    nk     = NN(2+nu+1:2+2*nu);
  end

% ---------- NNARXM model ----------
elseif mflag==5,
  [outputs,Ndat]  = size(Y);
  [outputs,NNn]   = size(NN);
  na = NN(:,1);
  if NNn==1
    nb = 0;                          % nnar model
    nk = 0;
    nu = 0;
    nab=na;
  else
    [nu,Ndat] = size(U); 
    nb     = NN(:,2:1+nu);           % nnarx model
    nk     = NN(:,2+nu:1+2*nu);
    if nu>1,
      nab  = na + sum(nb')';
    else
      nab    = na+nb;
    end
  end
  nc = 0;
  nmax = max(max([na nb+nk-1]));
  if isempty(Gamma), Gamma=eye(outputs); end
end
  
  
% --------- Common initializations --------
if mflag>=1 & mflag<=4,
  nmax     = max([na,nb+nk-1,nc]);      % 'Oldest' signal used as input to the model
  nab      = na+sum(nb);                % na+nb
  nabc     = nab+nc;                    % na+nb+nc
  outputs     = 1;                        % Only MISO models considered
end
N        = Ndat - nmax;                 % Size of training set
L_hidden = find(NetDef(1,:)=='L')';     % Location of linear hidden neurons
H_hidden = find(NetDef(1,:)=='H')';     % Location of tanh hidden neurons
L_output = find(NetDef(2,:)=='L')';     % Location of linear output neurons
H_output = find(NetDef(2,:)=='H')';     % Location of tanh output neurons
[hidden,inputs] = size(W1);
inputs          = inputs-1;
E        = zeros(outputs,N);
y1       = zeros(hidden,N);
Yhat     = zeros(outputs,N);


% >>>>>>>>>>>>>>>>>>>>  CONSTRUCT THE REGRESSION MATRIX PHI   <<<<<<<<<<<<<<<<<<<<<
PHI = zeros(sum(nab),N);
jj  = nmax+1:Ndat;
index = 0;
for o=1:outputs,
  for k = 1:na(o), PHI(k+index,:)    = Y(o,jj-k); end
  index = index+na(o);
  for kk = 1:nu,
    for k = 1:nb(o,kk), PHI(k+index,:) = U(kk,jj-k-nk(o,kk)+1); end
    index = index + nb(o,kk);
  end
end



% >>>>>>>>>>>>>>>>>>>>>>>>>>   COMPUTE NETWORK OUTPUT   <<<<<<<<<<<<<<<<<<<<<<<<<<<
% ---------- NNARX model ----------
if mflag==1 | mflag==5,
  Y  = Y(:,nmax+1:Ndat);
  h1 = W1*[PHI;ones(1,N)];  
  y1(H_hidden,:) = pmntanh(h1(H_hidden,:));
  y1(L_hidden,:) = h1(L_hidden,:);
    
  h2 = W2*[y1;ones(1,N)];
  Yhat(H_output,:) = pmntanh(h2(H_output,:));
  Yhat(L_output,:) = h2(L_output,:);
if mflag==5, Yhat=sqrtm(Gamma)*Yhat; end
  E        = Y - Yhat;                    % Error between Y and deterministic part
  SSE      = sum(sum(E.*E));              % Sum of squared errors (SSE)
  PI       = SSE/(2*N);                   % Performance index


% --------- NNARMAX1 model --------
elseif mflag==2,
  Y  = Y(nmax+1:Ndat);
  h1 = W1*[PHI;ones(1,N)];  
  y1(H_hidden,:) = pmntanh(h1(H_hidden,:));
  y1(L_hidden,:) = h1(L_hidden,:);
    
  h2 = W2*[y1;ones(1,N)];
  Yhat(H_output,:) = pmntanh(h2(H_output,:));
  Yhat(L_output,:) = h2(L_output,:);

  Ebar     = Y - Yhat;                    % Error between Y and deterministic part
  E        = filter(1,C,Ebar);            % Prediction error
  Yhat     = Y - E;                       % One step ahead prediction

  SSE      = E*E';                        % Sum of squared errors (SSE)
  PI       = SSE/(2*N);                   % Performance index


% --------- NNARMAX2 model --------
elseif mflag==3,
  Y  = Y(nmax+1:Ndat);
  PHI_aug=[PHI;zeros(nc,N);ones(1,N)];
  y1 = [y1;ones(1,N)];
  N2=N+1-skip;
  for t=1:N,
    h1 = W1*PHI_aug(:,t);  
    y1(H_hidden,t) = pmntanh(h1(H_hidden));
    y1(L_hidden,t) = h1(L_hidden);    

    h2 = W2*y1(:,t);
    Yhat(H_output,t) = pmntanh(h2(H_output,:));
    Yhat(L_output,t) = h2(L_output,:);

    E(:,t) = Y(:,t) - Yhat(:,t);          % Prediction error
    for d=1:min(nc,N-t),
      PHI_aug(nab+d,t+d) = E(:,t);
    end
  end
  SSE      = E(skip:N)*E(skip:N)';        % Sum of squared errors (SSE)
  PI       = SSE/(2*N2);                  % Performance index


% ---------- NNOE model ----------
elseif mflag==4,
  Y  = Y(nmax+1:Ndat);
  PHI_aug=[PHI;ones(1,N)];
  y1 = [y1;ones(1,N)];
  N2=N+1-skip;
  for t=1:N,
    h1 = W1*PHI_aug(:,t);;  
    y1(H_hidden,t) = pmntanh(h1(H_hidden));
    y1(L_hidden,t) = h1(L_hidden);    

    h2 = W2*y1(:,t);
    Yhat(H_output,t) = pmntanh(h2(H_output,:));
    Yhat(L_output,t) = h2(L_output,:);

    for d=1:min(na,N-t),
      PHI_aug(d,t+d) = Yhat(:,t);
    end
  end
  E     = Y - Yhat;                       % Error between Y and deterministic part
  SSE      = E(skip:N)*E(skip:N)';        % Sum of squared errors (SSE)
  PI       = SSE/(2*N2);                  % Performance index
end


% >>>>>>>>>>>>>>>>>>>>>>>>>>      PLOT THE RESULTS      <<<<<<<<<<<<<<<<<<<<<<<<<<<
si=figure-1;


% ---------- Output, Prediction and Prediction error ----------
for ii=1:outputs,
 figure(si+ii)
 subplot(211)
 plot(Y(ii,:),'b-'); hold on
 plot(Yhat(ii,:),'r--');hold off
 xlabel('time (samples)')
 if outputs==1,
   title('Output (solid) and one-step ahead prediction (dashed)')
 else
   title(['Output (solid) and one-step ahead prediction (dashed) (output # ' ...
          num2str(ii) ')']);
 end
 grid

 subplot(212)
 plot(E(ii,:));
 title('Prediction error (y-yhat)')
 xlabel('time (samples)')
 grid
 subplot(111)
 drawnow
end

% --------- Correlation functions ----------
for ii=1:outputs,
  figure(si+outputs+ii)
  eval(['subplot(' num2str(nu+1) '11)']);
  M=min(25,N-1);
  Eauto=xcorr(E(ii,:),'coeff');
  Eauto=Eauto(N:2*N-1);
  conf=1.96/sqrt(N);
  plot([0:M],Eauto(1:M+1),'b-'); hold on
  plot([0 M],[conf -conf;conf -conf],'r--');hold off
  xlabel('lag')
  if outputs==1
    title('Auto correlation function of prediction error')
  else
    title(['Auto correlation function of prediction error (output # ' ...
            num2str(ii) ')']);
  end
  grid
  Ecov=cov(E(ii,:));

  for i=1:nu,
    eval(['subplot(' num2str(nu+1) '1' num2str(i+1) ')']);
    Ucov=cov(U(i,1:N));
    UEcross=xcov(E(ii,:),U(i,1:N),'unbiased')/sqrt(Ecov*Ucov)';
    plot([-M:M], UEcross(N-M:N+M),'b-'); hold on
    plot([-M M],[conf -conf;conf -conf],'r--');hold off
    xlabel('lag')
    title(['Cross correlation fct of u' num2str(i) ' and prediction error'])
    ymax=min(5*conf,max([abs(UEcross)]));
    axis([-M M -ymax ymax]);
    grid
  end
  subplot(111)
  drawnow
end

% ---------- Extract linear model from network ----------
dy2dx=zeros(outputs*(inputs+1),N);

% Matrix with partial derivative of each output with respect to each of the
% outputs from the hidden neurons
for t=1:N,
  dy2dy1 = W2(:,1:hidden);
  for j = H_output',
    dy2dy1(j,:) = W2(j,1:hidden)*(1-Yhat(j,t).*Yhat(j,t));
  end

  % Matrix with partial derivatives of the output from each hidden neurons with
  % respect to each input:
  dy1dx = W1;
  for j = H_hidden',
    dy1dx(j,:) = W1(j,:)*(1-y1(j,t).*y1(j,t));
  end

  % Matrix with partial derivative of each output with respect to each input
  dl       = (dy2dy1 * dy1dx)';
  dl(inputs+1,:)=dl(inputs+1,:)+W2(:,hidden+1)';
  dy2dx(:,t) = dl(:);
end

figure(si+2*outputs+1)
subplot(212)
plot(dy2dx(1:outputs*inputs,:)')
title('Linearized network parameters')
xlabel('time (samples)')
grid
for ii=1:outputs,
 eval(['subplot(2' num2str(outputs) num2str(ii) ')']);
 hist(E(ii,:),20)
end
eval(['subplot(2' num2str(outputs) '1)']);
title('Histogram of prediction errors')
subplot(111)
figure(si+1)

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美精品vⅰdeose4hd| 顶级嫩模精品视频在线看| 最新久久zyz资源站| 久久综合成人精品亚洲另类欧美 | 国产乱码精品一区二区三区av| 五月综合激情网| 日韩有码一区二区三区| 偷拍日韩校园综合在线| 日韩—二三区免费观看av| 偷拍与自拍一区| 久久成人精品无人区| 久久se精品一区二区| 加勒比av一区二区| 粉嫩av一区二区三区在线播放| 国产成人一区在线| 99久久99久久久精品齐齐| 91免费国产在线| 51精品国自产在线| 精品久久久久久久久久久久久久久| www久久精品| 最新欧美精品一区二区三区| 亚洲一区二区三区四区五区黄 | 91香蕉国产在线观看软件| 91在线一区二区| 欧美精品一二三区| 久久精品人人做人人爽人人| 国产人成亚洲第一网站在线播放 | 美女诱惑一区二区| 成人自拍视频在线| 欧美日韩精品一区二区三区蜜桃| 精品少妇一区二区三区视频免付费| 国产婷婷色一区二区三区在线| 亚洲日本在线天堂| 久久99久久99| 在线观看免费视频综合| 精品久久国产老人久久综合| 亚洲欧洲一区二区三区| 日韩精品视频网站| 色综合久久中文综合久久97| 日韩欧美高清一区| 亚洲精选视频免费看| 极品少妇xxxx精品少妇| 91蝌蚪porny九色| 精品国产乱码久久久久久免费| 中文子幕无线码一区tr| 热久久免费视频| 在线一区二区三区四区五区| 久久久不卡网国产精品二区 | 久久久亚洲精华液精华液精华液| 亚洲日本va午夜在线电影| 久久精品国产第一区二区三区| 色综合久久中文综合久久97| 久久久亚洲午夜电影| 日韩福利电影在线观看| 欧美午夜不卡视频| 国产精品久久久久aaaa樱花 | 亚洲欧美激情一区二区| 国产美女娇喘av呻吟久久| 欧美久久久影院| 亚洲精品成人悠悠色影视| 成人夜色视频网站在线观看| 精品国产乱码久久久久久久| 日日夜夜免费精品视频| 日本韩国精品在线| 亚洲日本一区二区三区| 99久久99久久久精品齐齐| 国产日韩一级二级三级| 国产精品亚洲视频| 久久精品夜色噜噜亚洲aⅴ| 六月丁香综合在线视频| 日韩无一区二区| 热久久久久久久| 日韩欧美一区二区免费| 蜜芽一区二区三区| 欧美精品精品一区| 天天综合色天天| 制服丝袜一区二区三区| 日韩和的一区二区| 日韩欧美一二三| 国产在线观看免费一区| 精品国内片67194| 高清不卡一二三区| 亚洲视频免费在线观看| 色网站国产精品| 亚洲午夜影视影院在线观看| 欧美日韩亚洲综合| 青青草国产成人av片免费 | 粉嫩一区二区三区在线看| 久久久久久久久伊人| 风间由美一区二区三区在线观看 | 日韩欧美激情在线| 国产精品一区三区| 国产精品欧美一区喷水| 色综合天天综合狠狠| 亚洲国产欧美日韩另类综合| 4438x成人网最大色成网站| 美女脱光内衣内裤视频久久网站| 精品久久国产老人久久综合| 成人手机在线视频| 亚洲一区二区视频在线观看| 欧美一区在线视频| 风流少妇一区二区| 亚洲动漫第一页| 久久久综合激的五月天| 色婷婷精品大视频在线蜜桃视频| 午夜精彩视频在线观看不卡| 精品国产免费人成电影在线观看四季 | 99精品视频中文字幕| 亚洲综合色在线| 久久久一区二区三区捆绑**| 成人毛片老司机大片| 亚洲线精品一区二区三区| 精品电影一区二区| 在线视频国内自拍亚洲视频| 久久99精品国产.久久久久久 | 欧美日韩国产天堂| 精品写真视频在线观看| 亚洲另类春色国产| 久久亚洲一区二区三区四区| 欧美三级中文字幕在线观看| 九九国产精品视频| 亚洲国产日韩a在线播放| 国产亚洲一区二区三区四区| 欧美日韩一区视频| 不卡一区在线观看| 久久91精品国产91久久小草| 亚洲自拍偷拍欧美| 国产精品网曝门| 亚洲精品一线二线三线无人区| 在线观看亚洲专区| av毛片久久久久**hd| 国内久久精品视频| 青青草精品视频| 视频一区二区欧美| 亚洲综合区在线| 一区二区三区在线视频观看58| 国产午夜亚洲精品午夜鲁丝片 | 亚洲精选在线视频| 欧美国产一区二区| 久久久久久久久一| 精品国产露脸精彩对白| 欧美一区二区网站| 日韩一级二级三级精品视频| 欧美日韩高清影院| 欧美午夜寂寞影院| 欧美日免费三级在线| 91久久香蕉国产日韩欧美9色| 成人一二三区视频| www.日本不卡| 91首页免费视频| 99视频超级精品| 99视频在线观看一区三区| a亚洲天堂av| 91啪在线观看| 色综合久久六月婷婷中文字幕| 不卡一区二区三区四区| 99精品桃花视频在线观看| 99视频精品在线| 色一情一乱一乱一91av| 欧美这里有精品| 555夜色666亚洲国产免| 欧美一级精品大片| 精品国产免费久久 | 欧美主播一区二区三区| 欧美日韩一区在线观看| 宅男噜噜噜66一区二区66| 91麻豆精品国产| 久久先锋影音av| 中文字幕欧美日韩一区| 亚洲美女偷拍久久| 日日夜夜免费精品| 国产精品一区二区在线观看不卡| 国产一区二区三区综合| 99久久国产综合精品色伊| 91丨九色porny丨蝌蚪| 欧美日韩国产天堂| 精品av久久707| 亚洲天堂久久久久久久| 午夜激情一区二区| 国产成人在线免费| 欧美少妇bbb| 久久午夜免费电影| 亚洲一卡二卡三卡四卡五卡| 日本成人在线一区| youjizz久久| 6080午夜不卡| 国产精品久久久久精k8| 午夜精品福利一区二区蜜股av | 99国产精品视频免费观看| 欧美日韩一区二区三区高清 | 波多野结衣中文字幕一区| 欧美性猛交xxxx乱大交退制版| 欧美sm美女调教| 亚洲国产一区二区视频| 粉嫩嫩av羞羞动漫久久久| 欧美一区二区网站| 一区二区三区精密机械公司| 国内成人精品2018免费看| 欧洲视频一区二区| 国产日韩欧美电影|