亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? getgrad.m

?? matlab實現神經網絡程序集合
?? M
字號:
function [PSI,E]=getgrad(method,NetDef,NN,W1,W2,Chat,Y,U)
%  GETGRAD
%  -------
%          Produces a matrix of derivatives of network output w.r.t.
%          each network weight for use in the functions NNPRUNE and NNFPE.
%
%  Call: 
%  Network generated by nnarx (or nnrarx):
%           [PSI,E] = getgrad('nnarx',NetDef,NN,W1,W2,[],Y,U)
%
%  Network generated by nnarmax1 (or nnrarmx1):
%           [PSI,E] = getgrad('nnarmax1',NetDef,NN,W1,W2,Chat,Y,U)
%
%  Network generated by nnarmax2 (or nnrarmx2):
%           [PSI,E] = getgrad('nnarmax2',NetDef,NN,W1,W2,[],Y,U)
%
%  Network generated by nnoe:
%           [PSI,E] = getgrad('nnoe',NetDef,NN,W1,W2,[],Y,U)
%
%  NB: For time series, U is left out!
% 
%  Programmed by : Magnus Norgaard, IAU/EI/IMM, Technical Univ. of Denmark
%  LastEditDate  : Sep. 8, 1995


% >>>>>>>>>>>>>>>>>>>>>>>>>>>>      GET PARAMETERS     <<<<<<<<<<<<<<<<<<<<<<<<<<<< 
if strcmp(method,'nnarx') | strcmp(method,'nnrarx'),
  mflag=1;
elseif strcmp(method,'nnarmax1') | strcmp(method,'nnrarmx1'),
  mflag=2;
elseif strcmp(method,'nnarmax2') | strcmp(method,'nnrarmx2'),
  mflag=3;
elseif strcmp(method,'nnoe'),
  mflag=4;
else
  disp('Unknown method!!!!!!!!');
  break
end


% >>>>>>>>>>>>>>>>>>>>>>>>>>>>     INITIALIZATIONS     <<<<<<<<<<<<<<<<<<<<<<<<<<<< 
Ndat     = length(Y);                   % # of data
na = NN(1);

% ---------- NNARX model ----------
if mflag==1 | mflag==4,
  if length(NN)==1                      % nnar model
    nb = 0;
    nk = 0;
    nu = 0;
  else                                  % nnarx or nnoe model
    [nu,N] = size(U); 
    nb = NN(2:1+nu); 
    nk = NN(2+nu:1+2*nu);
  end
  nc = 0;

% --------- NNARMAX1 model --------
elseif mflag==2 | mflag==3,
  if length(NN)==2                      % nnarma model
    nc     = NN(2);
    nb     = 0;
    nk     = 0;
    nu     = 0;
  else                                  % nnarmax model
    [nu,Ndat]= size(U); 
    nb     = NN(2:1+nu);
    nc     = NN(2+nu);
    nk     = NN(2+nu+1:2+2*nu);
  end
end


% --------- Common initializations --------
nmax     = max([na,nb+nk-1,nc]);        % 'Oldest' signal used as input to the model
N        = Ndat - nmax;                 % Size of training set
nab      = na+sum(nb);                  % na+nb
nabc     = nab+nc;                      % na+nb+nc
outputs     = 1;                        % Only MISO models considered
L_hidden = find(NetDef(1,:)=='L')';     % Location of linear hidden neurons
H_hidden = find(NetDef(1,:)=='H')';     % Location of tanh hidden neurons
L_output = find(NetDef(2,:)=='L')';     % Location of linear output neurons
H_output = find(NetDef(2,:)=='H')';     % Location of tanh output neurons
[hidden,inputs] = size(W1);
inputs          = inputs-1;
E        = zeros(outputs,N);
y1       = zeros(hidden,N);
y1       = [y1;ones(1,N)];
Yhat     = zeros(outputs,N);
index = outputs*(hidden+1) + 1 + [0:hidden-1]*(inputs+1); % A useful vector!
index2  = (0:N-1)*outputs;              % Yet another useful vector
ones_h   = ones(hidden+1,1);            % A vector of ones
ones_i   = ones(inputs+1,1);            % Another vector of ones
parameters = (inputs+1)*hidden+(hidden+1)*outputs; % Total # of weights
PSI      = zeros(parameters,outputs*N); % Deriv. of each output w.r.t. each weight
RHO      = zeros(parameters,outputs*N); % Partial derivatives


% >>>>>>>>>>>>>>>>>>>>  CONSTRUCT THE REGRESSION MATRIX PHI   <<<<<<<<<<<<<<<<<<<<<
PHI = zeros(nab,N);
jj  = nmax+1:Ndat;
for k = 1:na, PHI(k,:)    = Y(jj-k); end
index4 = na;
for kk = 1:nu,
  for k = 1:nb(kk), PHI(k+index4,:) = U(kk,jj-k-nk(kk)+1); end
  index4 = index4 + nb(kk);
end


% >>>>>>>>>>>>>>>>>>>>>>>>>>   COMPUTE NETWORK OUTPUT   <<<<<<<<<<<<<<<<<<<<<<<<<<<
% ---------- NNARX model ----------
if mflag==1,
  PHI_aug=[PHI;ones(1,N)];
  Y  = Y(nmax+1:Ndat);
  h1 = W1*PHI_aug;  
  y1(H_hidden,:) = pmntanh(h1(H_hidden,:));
  y1(L_hidden,:) = h1(L_hidden,:);
    
  h2 = W2*y1;
  Yhat(H_output,:) = pmntanh(h2(H_output,:));
  Yhat(L_output,:) = h2(L_output,:);

  E     = Y - Yhat;                       % Error between Y and deterministic part

% --------- NNARMAX1 model --------
elseif mflag==2,
  Y  = Y(nmax+1:Ndat);
  PHI_aug=[PHI;ones(1,N)];
  h1 = W1*PHI_aug;  
  y1(H_hidden,:) = pmntanh(h1(H_hidden,:));
  y1(L_hidden,:) = h1(L_hidden,:);
    
  h2 = W2*y1;
  Yhat(H_output,:) = pmntanh(h2(H_output,:));
  Yhat(L_output,:) = h2(L_output,:);

  Ebar     = Y - Yhat;                    % Error between Y and deterministic part
  E        = filter(1,Chat,Ebar);         % Prediction error
  Yhat     = Y - E;                       % One step ahead prediction


% --------- NNARMAX2 model --------
elseif mflag==3,
  Y  = Y(nmax+1:Ndat);
  PHI_aug=[PHI;zeros(nc,N);ones(1,N)];
  for t=1:N,
    h1 = W1*PHI_aug(:,t);  
    y1(H_hidden,t) = pmntanh(h1(H_hidden));
    y1(L_hidden,t) = h1(L_hidden);    

    h2 = W2*y1(:,t);
    Yhat(H_output,t) = pmntanh(h2(H_output,:));
    Yhat(L_output,t) = h2(L_output,:);

    E(:,t) = Y(:,t) - Yhat(:,t);          % Prediction error
    for d=1:min(nc,N-t),
      PHI_aug(nab+d,t+d) = E(:,t);
    end
  end


% ---------- NNOE model ----------
elseif mflag==4,
  Y  = Y(nmax+1:Ndat);
  PHI_aug=[PHI;ones(1,N)];
  for t=1:N,
    h1 = W1*PHI_aug(:,t);;  
    y1(H_hidden,t) = pmntanh(h1(H_hidden));
    y1(L_hidden,t) = h1(L_hidden);    

    h2 = W2*y1(:,t);
    Yhat(H_output,t) = pmntanh(h2(H_output,:));
    Yhat(L_output,t) = h2(L_output,:);

    for d=1:min(na,N-t),
      PHI_aug(d,t+d) = Yhat(:,t);
    end
  end
  E     = Y - Yhat;                       % Error between Y and deterministic part
end


% >>>>>>>>>>>>>>>>>>>>>>>>>>>   COMPUTE THE RHO MATRIX   <<<<<<<<<<<<<<<<<<<<<<<<<<
% Partial derivative of output (y2) with respect to each weight and neglecting
% that the model inputs (the residuals) depends on the weights

  % ==========   Elements corresponding to the linear output units   ============
  for i = L_output'
    index1 = (i-1) * (hidden + 1) + 1;

    % -- The part of RHO corresponding to hidden-to-output layer weights --
    RHO(index1:index1+hidden,index2+i) = y1;
    % ---------------------------------------------------------------------
 
    % -- The part of RHO corresponding to input-to-hidden layer weights ---
    for j = L_hidden',
      RHO(index(j):index(j)+inputs,index2+i) = W2(i,j)*PHI_aug;
    end
     
    for j = H_hidden',
      tmp = W2(i,j)*(1-y1(j,:).*y1(j,:)); 
      RHO(index(j):index(j)+inputs,index2+i) = tmp(ones_i,:).*PHI_aug;
    end 
    % ---------------------------------------------------------------------    
  end

  % ============  Elements corresponding to the tanh output units   =============
  for i = H_output',
    index1 = (i-1) * (hidden + 1) + 1;

    % -- The part of RHO corresponding to hidden-to-output layer weights --
    tmp = 1 - y2(i,:).*y2(i,:);
    RHO(index1:index1+hidden,index2+i) = y1.*tmp(ones_h,:);
    % ---------------------------------------------------------------------
         
    % -- The part of RHO corresponding to input-to-hidden layer weights ---
    for j = L_hidden',
      tmp = W2(i,j)*(1-y2(i,:).*y2(i,:));
      RHO(index(j):index(j)+inputs,index2+i) = tmp(ones_i,:).* PHI_aug;
    end
      
    for j = H_hidden',
      tmp  = W2(i,j)*(1-y1(j,:).*y1(j,:));
      tmp2 = (1-y2(i,:).*y2(i,:));
      RHO(index(j):index(j)+inputs,index2+i) = tmp(ones_i,:)...
                                                .*tmp2(ones_i,:).* PHI_aug;
    end
    % ---------------------------------------------------------------------
  end
  


% >>>>>>>>>>>>>>>>>>>>>>>>>>   COMPUTE THE PHI MATRIX   <<<<<<<<<<<<<<<<<<<<<<<<<<<
% ==================== NNARX model ====================
if mflag==1,
  PSI = RHO;


% ==================== NNARMAX1 model ====================
elseif mflag==2,
    % Partial deriv. of output wrt. each C-par.
      RHO2     = zeros(nc,N);
    for i=1:nc,
      RHO2(i,nmax+i-1:N) = E(1:N-i-nmax+2);
    end
    PSI = [PSI;zeros(nc,N)];
    for i=1:parameters-nc,
      PSI(i,:) = filter(1,Chat,RHO(i,:));
    end
    for i=1:nc,
      PSI(parameters+i,:) = filter(1,Chat,RHO2(i,:)); % PSI_red
    end
  
   

% ==================== NNARMAX2 model ====================
elseif mflag==3,
  dy2de    = zeros(nc,N);                 % Der. of outputs wrt. the past residuals
  index4   = nab+1:nabc;                  % And a fourth
  
    % ---------- Find derivative of output wrt. the past residuals ----------
    for t=1:N,
      dy2dy1 = W2(:,1:hidden);
      for j = H_output',
        dy2dy1(j,:) = W2(j,1:hidden)*(1-y2(j,t).*y2(j,t));
      end

      % Matrix with partial derivatives of the output from each hidden neurons with
      % respect to each input:
      dy1de = W1(:,index4);
      for j = H_hidden',
        dy1de(j,:) = W1(j,index4)*(1-y1(j,t).*y1(j,t));
      end

      % Matrix with partial derivative of each output with respect to each input
      dy2de(:,t)= (dy2dy1 * dy1de)';
    end


    % ---------- Determine PSI by "filtering" ----------
    for t=1:N,
      PSI(:,t)=RHO(:,t);
      for t1=1:min(nc,t-1),
        PSI(:,t)  = PSI(:,t)-dy2de(t1,t)*PSI(:,t-t1);
      end
    end
    

% ==================== NNOE model ====================
elseif mflag==4,

   % ---------- Find derivative of output wrt. the past outputs ----------
  dy2dy    = zeros(na,N);                 % Der. of output wrt. the past outputs
  dy1dy    = zeros(hidden,na);            % Der. of hidden unit outp. wrt. past outputs
    index4   = 1:na;                        % And a fourth
    for t=1:N,
      dy2dy1 = W2(:,1:hidden);
      for j = H_output',
        dy2dy1(j,:) = W2(j,1:hidden)*(1-y2(j,t).*y2(j,t));
      end
      
      % Matrix of partial derivatives of the output from each hidden unit with
      % respect to each input:
      dy1dy(L_hidden,:) = W1(L_hidden,index4);
      for j = H_hidden',
        dy1dy(j,:) = W1(j,index4)*(1-y1(j,t).*y1(j,t));
      end

      % Matrix of partial derivatives of each output with respect to each input
      dy2dy(:,t)= (dy2dy1 * dy1dy)';
    end


    % ---------- Determine PSI by "filtering" ----------
    for t=1:N,
      PSI(:,t)=RHO(:,t);
      for t1=1:min(na,t-1),
        PSI(:,t)  = PSI(:,t)+dy2dy(t1,t)*PSI(:,t-t1);
      end
    end
end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲国产aⅴ天堂久久| 国产伦精品一区二区三区免费 | 欧美性大战久久久久久久| 欧美一级理论性理论a| 中文字幕在线一区免费| 精品在线亚洲视频| 欧美色偷偷大香| 国产精品不卡一区| 伦理电影国产精品| 欧美日韩精品二区第二页| 中文字幕在线不卡| 国产高清精品网站| 精品日韩欧美一区二区| 亚洲小说欧美激情另类| 99久久久国产精品免费蜜臀| 久久免费电影网| 免费观看在线综合色| 欧美午夜一区二区三区免费大片| 国产午夜精品久久久久久免费视| 日韩中文字幕一区二区三区| 欧美在线免费播放| 综合激情网...| 粉嫩欧美一区二区三区高清影视| 久久久久久久网| 久久av资源站| 日韩一级黄色大片| 麻豆专区一区二区三区四区五区| 一道本成人在线| 亚洲欧美激情视频在线观看一区二区三区 | 亚洲国产精品自拍| 色婷婷综合久久| 自拍偷拍亚洲综合| 91免费版pro下载短视频| 久久久久9999亚洲精品| 国产激情偷乱视频一区二区三区 | 亚洲人成影院在线观看| 99久久99久久精品免费观看| 国产精品你懂的在线欣赏| 国产精品亚洲成人| 国产嫩草影院久久久久| 岛国精品在线观看| 亚洲欧洲国产日韩| 一本久久a久久免费精品不卡| 亚洲免费伊人电影| 欧美在线免费播放| 日日摸夜夜添夜夜添亚洲女人| 欧美成人伊人久久综合网| 久久99精品久久久| 日本一区二区久久| 在线观看免费成人| 美日韩一区二区| 久久久久国色av免费看影院| 99国产欧美久久久精品| 亚洲在线观看免费视频| 91精品国产综合久久精品麻豆| 久久99久久精品欧美| 国产欧美精品一区二区三区四区 | 蜜臀久久99精品久久久画质超高清| 日韩一二三区不卡| 国产黄人亚洲片| 亚洲综合在线免费观看| 欧美一卡2卡三卡4卡5免费| 国产精品综合一区二区三区| 国产精品高清亚洲| 4438x成人网最大色成网站| 国产高清不卡一区| 亚洲亚洲精品在线观看| 久久精品夜色噜噜亚洲aⅴ| 色综合网色综合| 精品一区精品二区高清| 亚洲三级视频在线观看| 日韩女优av电影| 成人爽a毛片一区二区免费| 亚洲成人你懂的| 国产精品久久久久婷婷| 欧美一区二区三区四区视频| 不卡视频在线观看| 精品综合久久久久久8888| 亚洲免费电影在线| 国产夜色精品一区二区av| 欧美美女一区二区三区| 99国产精品久久久久久久久久| 日韩**一区毛片| 亚洲人成小说网站色在线| 久久综合九色综合欧美就去吻| 欧美日韩中文精品| 99热这里都是精品| 国产一区二区精品久久91| 午夜久久久久久久久| 国产精品美女久久久久久| 精品国产免费人成在线观看| 在线观看日韩毛片| 99久久精品99国产精品| 国产**成人网毛片九色 | 色国产综合视频| 国产精品一二三四五| 欧美aⅴ一区二区三区视频| 亚洲精品欧美综合四区| 亚洲蜜桃精久久久久久久| 久久免费美女视频| 日韩免费成人网| 91麻豆精品国产91久久久使用方法 | 亚洲欧洲国产日韩| 日本一区二区三区免费乱视频| 精品福利二区三区| 欧美一卡在线观看| 91精品蜜臀在线一区尤物| 在线观看网站黄不卡| 91浏览器打开| 色综合天天狠狠| 91在线码无精品| 91在线精品一区二区| 成人福利在线看| 国产69精品久久99不卡| 国产精品996| 国产99久久久国产精品潘金| 国产精品正在播放| 国产·精品毛片| 色综合久久综合| 91国偷自产一区二区三区成为亚洲经典 | 亚洲欧美日韩久久| 一卡二卡三卡日韩欧美| 亚洲激情五月婷婷| 亚洲成人黄色小说| 日精品一区二区三区| 精品一区二区三区在线视频| 国产专区综合网| 成人免费视频播放| av一区二区久久| 91精品1区2区| 精品免费视频一区二区| 国产丝袜在线精品| 亚洲精品久久久蜜桃| 亚洲影院理伦片| 日韩不卡免费视频| 国产精品99久久久久久久女警| 99re这里都是精品| 欧美人牲a欧美精品| 久久久国际精品| 亚洲欧洲中文日韩久久av乱码| 亚欧色一区w666天堂| 精品一区二区三区影院在线午夜| 国产成人欧美日韩在线电影| 99精品国产91久久久久久| 宅男噜噜噜66一区二区66| 久久综合久久鬼色中文字| 亚洲精品久久久蜜桃| 久久99久国产精品黄毛片色诱| 成人激情午夜影院| 欧美午夜精品一区二区三区| 精品99一区二区| 一区二区三区蜜桃网| 久久精品国产一区二区| 91视频国产观看| 日韩一级免费观看| 一区二区三区日韩欧美精品 | 91小宝寻花一区二区三区| 欧美巨大另类极品videosbest| 日本一区二区免费在线观看视频 | 亚洲精品视频免费看| 青青国产91久久久久久| av成人动漫在线观看| 日韩欧美国产一区在线观看| 亚洲人成小说网站色在线 | 日韩**一区毛片| 99久久精品国产网站| 精品国内二区三区| 调教+趴+乳夹+国产+精品| av网站一区二区三区| 精品国产成人在线影院| 亚洲人快播电影网| 国产91精品久久久久久久网曝门| 欧美一区二区网站| 一级精品视频在线观看宜春院 | 中文字幕中文字幕在线一区 | 国产精品久久久久久久蜜臀| 日韩高清一区在线| 91久久精品一区二区三| 中文字幕在线观看不卡视频| 国产一区二区在线观看视频| 欧美电影在哪看比较好| 亚洲黄色av一区| a在线欧美一区| 欧美激情一区三区| 国产真实乱子伦精品视频| 日韩三级免费观看| 日韩国产欧美在线观看| 欧美日韩精品专区| 一区二区三区在线高清| 91黄色激情网站| 樱桃视频在线观看一区| 91年精品国产| 亚洲品质自拍视频| 91久久一区二区| 亚洲国产视频a| 精品视频一区 二区 三区| 亚洲国产另类av| 欧美精选一区二区| 日本欧美在线看| 欧美成人三级电影在线|