亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? matlab實現神經網絡程序集合
??
字號:
                                --OO--
                      
                           Magnus Norgaard's
                       
           NEURAL NETWORK BASED SYSTEM IDENTIFICATION TOOLBOX

                             Version 1.1
                         
                       Department of Automation
                           Building 326
                         2800 Lyngby, Denmark
                        
                   Technical University of Denmark

                                --OO--


The toolbox contains a number of m-files for training and evaluation of
multi-layer perceptron type neural networks. There are functions for 
working ordinary feed-forward networks as well as for identification of 
nonlinear dynamic systems and time-series analysis.

Not all functions have been thoroughly tested yet and even if I 
haven't been able to find any bugs, I can't guarantee that you won't encounter 
any problems. 

Below an overview of the files contained in this directory is given along
with a brief description of what they do. The on-line help facility explains
how to call the different functions. You simply write help <function-name>
in the MATLAB command window.

Along with the m- and c-files in this directory you will find a manual for the
toolbox. Start by printing this out and read the release notes.

A number of simple demonstration programs have been made to illustrate how most
of the functions work. Run these to get an idea of what the toolbox
provides. Be careful with the demos, though. Due to the existence of several
local minimas, the results will often vary a great deal from run to run.


Enjoy!
- MN


                                --OO--
                                
                                
                                

CURRENTLY WORKING FUNCTIONS IN THIS DIRECTORY:
---------------------------------------------

FUNCTIONS FOR TRAINING NETWORKS:
batbp    : Batch version of the back-propagation algorithm.
incbp    : Recursive (/incremental) version of back-propagation.
igls     : Iterated Generalized Least Squares training of multi-output nets.
marq     : Levenberg-Marquardt method.
marqlm   : Memory-saving implementation of the Levenberg-Marquardt method.
rpe      : Recursive prediction error method.


FUNCTIONS FOR PRETREATING THE DATA:
dscale   : Scale data to zero mean and variance one.


FUNCTIONS FOR TRAINING NETWORKS TO MODEL DYNAMIC SYSTEMS:
lipschit : Determine the lag space.
nnarmax1 : Identify a Neural Network ARMAX (or ARMA) model (Linear MA filter).
nnarmax2 : Identify a Neural Network ARMAX (or ARMA) model.
nnarx    : Identify a Neural Network ARX (or AR) model.
nnarxm   : Identify a multi output Neural Network ARX (or AR) model.
nnigls   : Iterated Generalized LS training of multi-output NNARX models.
nniol    : Identify a Neural Network model suited for I-O linearization control.
nnoe     : Identify a Neural Network Output Error model.
nnrarmx1 : Recursive counterpart to NNARMAX1.
nnrarmx2 : Recursive counterpart to NNARMAX2.
nnrarx   : Recursive counterpart to NNARX.
nnssif   : Identify a NN State Space Innovations form model.


FUNCTIONS FOR PRUNING NETWORKS:
netstruc : Extract weight matrices from matrix of parameter vectors.
nnprune  : Prune models of dynamic systems with Optimal Brain Surgeon (OBS).
obdprune : Prune feed-forward networks with Optimal Brain Damage (OBD).
obsprune : Prune feed-forward networks with Optimal Brain Surgeon (OBS).


FUNCTIONS FOR EVALUATING TRAINED NETWORKS:
fpe      : FPE estimate of the generalization error for feed-forward nets.
ifvalid  : Validation of models generated by NNSSIF.
ioleval  : Validation of models generated by NNIOL.
kpredict : k-step ahead prediction of dynamic systems.
loo      : Leave-One-Out estimate of generalization error for feed-forward nets.
nneval   : Validation of feed-forward networks (trained by marq,rpe,bp).
nnfpe    : FPE for I/O models of dynamic systems.
nnloo    : Leave-One-Out estimate for NNARX models.
nnsimul  : Simulate model of dynamic system from control sequence alone.
nnvalid  : Validation of I/O models of dynamic systems.
wrescale : Rescale weights of trained network.
xcorrel  : Calculates high-order cross-correlation functions


MISCELLANOUS FUNCTIONS:
README   : This file.
RELEASE  : Release notes.
Contents : Contents file.
drawnet  : Draws a two layer neural network.
getgrad  : Derivative of network outputs w.r.t. the weights.
pmntanh  : Fast tanh function.


DEMOS:
test1    : Demonstrates different training methods on a curve fitting example.
test2    : Demonstrates the NNARX function.
test3    : Demonstrates the NNARMAX2 function.
test4    : Demonstrates the NNSSIF function.
test5    : Demonstrates the NNOE function.
test6    : Demonstrates the effect of regularization by weight decay.
test7    : Demonstrates pruning by OBS on the sunspot benchmark problem.


OTHER FILES IN DIRECTORY
pmnshow, test6mat, test7mat, and solplet.asc are used by the test programs.

manual1.ps, manual2.ps contains the manual for the toolbox in Postscript format.

Makefile, marq.c, nnarmax2.c, nnoe.c, nnssif.c, matrix.c, matrix2.h, nnmisc.c,
nnmisc.h contains the source code necessary for generating CMEX versions of
the functions marq, nnarmax2, nnoe, and nnssif.


?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产成人综合在线播放| 中文字幕第一区第二区| 色成人在线视频| 成人一区在线观看| 蜜桃av噜噜一区二区三区小说| 亚洲宅男天堂在线观看无病毒| 久久噜噜亚洲综合| 国产免费久久精品| 中文字幕av一区二区三区免费看| 中文字幕乱码亚洲精品一区| 中文字幕一区二区在线观看| 国产精品萝li| 一区二区免费在线播放| 亚洲欧美一区二区三区孕妇| 亚洲欧美日韩精品久久久久| 亚洲综合小说图片| 午夜不卡av免费| 国产一区二区三区美女| 国产mv日韩mv欧美| 99精品欧美一区二区蜜桃免费| 99久久精品国产麻豆演员表| 欧美在线观看18| 日韩视频一区在线观看| 精品欧美一区二区在线观看 | 91在线一区二区| 色激情天天射综合网| 欧美久久久久久久久久| 精品美女一区二区| 亚洲人被黑人高潮完整版| 亚洲成人激情综合网| 狠狠网亚洲精品| 91精品福利视频| 精品国偷自产国产一区| 日本一区二区久久| 洋洋av久久久久久久一区| 久久成人免费日本黄色| 99视频在线精品| 欧美电影免费观看高清完整版在线| 国产亚洲一区二区在线观看| 亚洲精品综合在线| 精品一区二区综合| 欧美少妇bbb| 久久久久99精品国产片| 亚洲综合无码一区二区| 国产成人亚洲精品青草天美| 在线影视一区二区三区| 国产视频视频一区| 午夜精品福利在线| 成人性生交大片免费看视频在线 | 欧美一区二区福利视频| 自拍视频在线观看一区二区| 狂野欧美性猛交blacked| 91老师片黄在线观看| 久久综合色天天久久综合图片| 一区二区三区四区av| 国产麻豆视频一区| 日韩手机在线导航| 午夜视频在线观看一区| 91蜜桃网址入口| 久久网站热最新地址| 日韩制服丝袜先锋影音| 欧美偷拍一区二区| 亚洲欧美日韩综合aⅴ视频| 国产.欧美.日韩| 26uuu精品一区二区三区四区在线 26uuu精品一区二区在线观看 | 成人av在线网| 国产三级久久久| 国产一区二区三区免费在线观看| 一本到一区二区三区| 国产精品伦理一区二区| 国产一区二区三区在线观看精品| 日韩欧美国产一区在线观看| 免费看精品久久片| 欧美一二三区在线观看| 蓝色福利精品导航| 日韩女同互慰一区二区| 伦理电影国产精品| 欧美不卡在线视频| 久久99国产精品麻豆| 久久综合九色综合97婷婷女人| 免费黄网站欧美| 精品国产精品一区二区夜夜嗨| 免费看黄色91| 久久久噜噜噜久噜久久综合| 国产精一区二区三区| 国产日韩欧美a| 不卡电影一区二区三区| 亚洲精品ww久久久久久p站| 欧美网站一区二区| 日产精品久久久久久久性色| 日韩精品一区二区三区在线| 国产一区高清在线| 国产精品传媒视频| 在线观看免费亚洲| 天堂久久一区二区三区| 精品对白一区国产伦| 国产一区二区不卡| 亚洲男人天堂一区| 欧美日韩高清影院| 精品影视av免费| 亚洲天堂成人网| 91麻豆精品国产91久久久久久久久| 七七婷婷婷婷精品国产| 久久久久国产一区二区三区四区 | 欧美在线观看视频一区二区| 免费在线欧美视频| 国产精品污www在线观看| 91高清在线观看| 亚洲欧洲综合另类| 一本大道综合伊人精品热热| 亚洲国产成人自拍| 久久国产精品色| 欧美成人精精品一区二区频| 成人影视亚洲图片在线| 亚洲一二三级电影| 欧美夫妻性生活| 成人精品小蝌蚪| 午夜成人在线视频| 国产精品家庭影院| 91.麻豆视频| 99re66热这里只有精品3直播 | 9191成人精品久久| 粉嫩aⅴ一区二区三区四区五区| 亚洲午夜免费福利视频| 久久久国产午夜精品| 欧洲一区在线电影| 成人午夜视频在线| 麻豆一区二区99久久久久| 亚洲国产视频在线| 国产精品天美传媒| 日韩精品一区二区三区视频在线观看| 91在线观看下载| 国产很黄免费观看久久| 丝袜a∨在线一区二区三区不卡| 中文字幕一区二区在线播放| 精品日韩欧美在线| 日韩女优制服丝袜电影| 欧美日韩一级大片网址| 91黄色免费观看| k8久久久一区二区三区 | 亚洲自拍偷拍九九九| 国产视频911| 欧美成人r级一区二区三区| 欧美午夜电影一区| 欧美午夜电影网| 91成人免费网站| 91美女福利视频| 9l国产精品久久久久麻豆| 国产精品99久久久久久久vr| 卡一卡二国产精品 | 麻豆精品在线视频| 日韩专区中文字幕一区二区| 亚洲午夜在线电影| 无码av中文一区二区三区桃花岛| 亚洲日本在线观看| 日韩美女视频一区二区 | 日本一区二区三区国色天香 | 亚洲国产中文字幕在线视频综合| 亚洲欧洲综合另类| 一二三四社区欧美黄| 一区二区三区在线视频观看58| 中文字幕一区二区日韩精品绯色| 国产午夜精品久久久久久免费视| 久久久影视传媒| 国产精品美女久久久久久久 | 天堂久久久久va久久久久| 午夜激情一区二区三区| 看电视剧不卡顿的网站| 国产精品综合一区二区三区| www.欧美.com| 欧美日韩在线播| 亚洲精品在线免费观看视频| 久久久影视传媒| 亚洲人午夜精品天堂一二香蕉| 亚洲已满18点击进入久久| 婷婷丁香久久五月婷婷| 久久99九九99精品| av不卡一区二区三区| 欧美天天综合网| 久久夜色精品国产欧美乱极品| 中文字幕成人网| 亚洲bt欧美bt精品| 国产一区二区女| 色哟哟精品一区| 久久综合久久综合久久| 国产精品第四页| 日韩黄色在线观看| 成人综合在线视频| 欧美情侣在线播放| 国产午夜精品理论片a级大结局| 一区二区三区资源| 国产一区二区三区蝌蚪| 欧美三级电影一区| 国产视频一区二区在线观看| 午夜精品一区在线观看| 成人午夜在线播放| 日韩女优视频免费观看| 亚洲精品国产无天堂网2021| 激情国产一区二区| 欧美日韩你懂的|