亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme.txt

?? Non-parametric density estimation
?? TXT
字號:
==============================================================================
MATLAB KDE Class Description & Specification
==============================================================================

  The KDE class is a general matlab class for k-dimensional kernel density
estimation.  It is written in a mix of matlab ".m" files and MEX/C++ code.
Thus, to use it you will need to be able to compile C++ code for Matlab.
Note that the default compiler for Windows does *not* support C++, so you
will need GCC under Linux, or GCC or Visual C++ for Windows. Bloodshed
(http://www.bloodshed.net) supplies a nice development environment along
with the MinGW (http://www.mingw.org) compiler. See the page 
http://gnumex.sourceforge.net/ for help setting up MEX with MinGW.

  Kernels supported are:  Gaussian, Epanetchnikov (truncated quadratic), 
				and Laplacian (Double exponential)
  For multivariate density estimates, the code supports product kernels -- 
        kernels which are products of the kernel function in each dimension.  
	For example, for Gaussian kernels this is equivalent to requiring a 
	diagonal covariance.
	It can also support non-uniform kernel bandwidths -- i.e. bandwidths 
	which vary over kernel centers.

  The implementation uses "kd-trees", a heirarchical representation for
point sets which caches sufficient statistics about point locations etc.
in order to achieve potential speedups in computation.  For the Epanetchnikov
kernel this can translate into speedups with no loss of precision; but for
kernels with infinite support it provides an approximation tolerance level,
which allows tradeoffs between evaluation quality and computation speed.

  In particular, we implement Alex Gray's "Dual Tree" evaluation algorithm;
see [Gray and Moore, "Very Fast Multivariate Kernel Density Estimation using
via Computational Geometry", in Proceedings, Joint Stat. Meeting 2003] for more 
details. This gives a tolerance parameter which is a percent error (from the 
exact, N^2 computation) on the value at any evaluated point.  In general, 
"tolerance" parameters in the matlab code / notes refers to this percent 
tolerance. This percentage error translates to an absolute additive error on 
the mean log-likelihood, for example.

  An exception to this is the gradient calcuation functions, which calculate
using an absolute tolerance value.  This is due to the difficulty of finding
a percentage bound when the function calculated is not strictly positive.

  We have also recently implemented the so-called Improved Fast Gauss Transform,
described in [Yang, Duraiswami, and Gumerov, "Improved Fast Gauss Transform", 
submitted to the Siam Journal of Scientific Computing].  This often performs
MUCH faster than the dual tree algorithm mentioned above, but the error bounds
which control the computation are often quite loose, and somewhat unwieldy
(for example, it is difficult to obtain the fractional error bounds provided &
used by the dual tree methods and other functions in the KDE toolbox).  Thus 
for the moment we have left the IFGT separate, with alternate controls for 
computational complexity (see below, and the file "evalIFGT.m").


==============================================================================
Getting Started
==============================================================================
  Unzip the KDE class to a directory called @kde.

  Compile the MEX functions.  This can be done by running "makemex" from
    inside matlab, in the "@kde/mex" directory.  If this fails, make sure that
    MEX / C++ compilation works.  The KDE toolbox is tested in Matlab R13, but 
    apparently has problems in R12; I'm planning to investigate this.

    NOTE: MS Visual C++ has a bug in dealing with "static const" variables; I
      think there is a patch available, or you can change these to #defines.

  Operate from the class' parent directory, or add it to your MATLAB path
    (e.g. if you unzip to "myhome/@kde", cd in matlab to the "myhome" dir,
    or add it to the path.)
  
  Objects of type KDE may be created by e.g.
    p = kde( rand(2,1000), [.05;.03] );		% Gaussian kernel, 2D
						%  BW = .05 in dim 1, .03 in dim 2.
    p = kde( rand(2,1000), .05, ones(1,1000) )  % Same as above, but uniform BW and
						%  specifying weights 
    p = kde( rand(2,1000), .05, ones(1,1000), 'Epanetchnikov')  % Quadratic kernel
						% Just 'E' or 'e' also works
    p = kde( rand(2,1000), 'rot' );		% Gaussian kernel, 2D, 
						%  BW chosen by "rule of thumb" (below)

  To see the kernel shape types, you can use:
    plot(-3:.01:3, evaluate(kde(0,1,1,T),-3:.01:3) ); % where T = 'G', 'E', or 'L'

  
  Kernel sizes may be selected automatically using e.g.
    p = ksize(p, 'lcv');	% 1D Likelihood-based search for BW
    p = ksize(p, 'rot');	% "Rule of Thumb"; Silverman '86 / Scott '92
    p = ksize(p, 'hall');	% Plug-in type estimator

  Density estimates may be visualized using e.g.
    plot(p);
  or
    mesh(hist(p));

  See help kde/plot and help kde/hist for more information.

  Also, the demonstration programs @kde/examples/demo_kde_#.m may be helpful.

==============================================================================
KDE Matlab class definition
==============================================================================

The following is a simple list of all accessible functions for the KDE class.


Constructors:
=====================================================
  kde( )			: empty kde
  kde( kde )			: re-construct kde from points, weights, bw, etc.
  kde( points, bw )		: construct Gauss kde with weights 1/N
  kde( points, bw, weights)	: construct Gaussian kde
  kde( points, bw, weights,type): potentially non-Gaussian

  marginal( kde, dim)		: marginalize to the given dimensions 

  condition( kde, dim, A)	: marginalize to ~dim and weight by K(x_i(dim),a(dim)) 

  resample( kde, [kstype] )	: draw N samples from kde & use to construct a new kde

  reduce( kde, ...)             : construct a "reduced" density estimate (fewer points)

  joinTrees( t1, t2 )           : make a new tree with t1 and t2 as
				  the children of a new root node

Accessors: (data access, extremely limited or no processing req'd)
=====================================================
  getType(kde)		: return the kernel type of the KDE ('Gaussian', etc)

  getBW(kde,index)	: return the bandwidth assoc. with x_i  (Ndim x length(index))
  adjustBW		: set the bandwidth(s) of the KDE (by reference!)
			   Note: cannot change from a uniform -> non-uniform bandwidth

  ksize			: automatic bandwidth selection via a number of methods
    LCV			: 1D search using max leave-one-out likelihood criterion
    HALL		: Plug-in estimator with good asymptotics; MISE criterion
    ROT,MSP		: Fast standard-deviaion based methods; AMISE criterion
    LOCAL		: Like LCV, but makes BW propto k-th NN distance (k=sqrt(N))

  getPoints(kde)	: Ndim x Npoints array of kernel locations
  adjustPoints(p,delta) : shift points of P by delta (by reference!)

  getWeights		: [1 x Npts] array of kernel weights
  adjustWeights		: set kernel weights (by reference!)

  rescale(kde,alpha)	: rescale a KDE by the (vector) alpha

  getDim		: get the dimension of the data
  getNpts		: get the # of kernel locations
  getNeff		: "effective" # of kernels (accounts for non-uniform weights)

  sample(P,Np,KSType)	: draw Np new samples from P and set BW according to KSType


Display: (visualization / Description)
=====================================================
  plot(kde...)		: plot the specified dimensions of the KDE locations
  hist(kde...)		: discretize the kde at uniform bin lengths
  display		: text output describing the KDE
  double		: boolean evaluation of the KDE (non-empty)


Statistics:  (useful stats & operations on a kde)
=====================================================
  covar			: find the (weighted) covariance of the kernel centers
  mean			: find the (weighted) mean of the kernel centers
  modes			: (attempt to) find the modes of the distribution

  knn(kde, points, k)   : find the k nearest neighbors of each of
			    points in kde

  entropy		: estimate the entropy of the KDE
          ??? Maybe be able to specify alternate entropy estimates? Distance, etc?
  kld			: estimate divergence between two KDEs
  ise			: eval/estimate integrated square difference between two KDEs

  evaluate(kde, x[,tol]): evaluate KDE at a set of points x
  evaluate(p, p2 [,tol]):  "" "", x = p2.pts (if we've already built a tree)

  evalIFGT(kde, x, N)   : same as above, but use the (very fast) Nth order improved 
  evalIFGT(p, p2, N)    : Fast Gauss transform.  Req's uniform-BW Gaussian kernels.
  
  evalAvgLogL(kde, x)	: compute Mean( log( evaluate(kde, x) ))
  evalAvgLogL(kde, kde2):   "" "" but use the weights of kde2
  evalAvgLogL(kde)      : self-eval; leave-one-out option

  llGrad(p,q)		: find the gradient of log-likelihood for p
			    evaluated at the points of q
  llHess(p,q)		: find the Hessian of log-likelihood of p at q
  entropyGrad(p)	: estimate gradient of entropy (uses llGrad)
  miGrad(p,dim)		: "" for mutual information between p(dim), p(~dim)
  klGrad(p1,p2) 	: estimate gradient direction of KL-divergence



Mixture products: (NBP stuff)
=====================================================
GAUSSIAN KERNELS ONLY

productApprox		: accessor for other product methods

  prodSampleExact	: sample N points exactly (N^d computation)
  prodSampleEpsilon	: kd-tree epsilon-exact sampler
  prodSampleGibbs1	: seq. index gibbs sampler
  prodSampleGibbs2	: product of experts gibbs sampler
  prodSampleGibbsMS1	: multiresolution version of GS1
  prodSampleGibbsMS2	: multiresolution version of GS2
  prodSampleImportance 	: importance sampling
  prodSampleImportGauss	: gaussian importance sampling

productExact		: exact computation (N^d kernel centers)


=====================================================
USAGE EXAMPLES
=====================================================

The demonstration programs @kde/examples/demo_kde_#.m may be helpful.


=====================================================
COPYRIGHT / LICENSE
=====================================================
The kde package and all code were written by Alex Ihler and Mike Mandel,
and are copyrighted under the (lesser) GPL:
  Copyright (C) 2003  Alexander Ihler

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; version 2.1 or later.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

The authors may be contacted via email at: ihler@mit.edu

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
粉嫩一区二区三区性色av| 欧美精品一区二区三区蜜桃视频| 日韩欧美国产一区二区三区| 天天操天天干天天综合网| 欧美三级电影一区| 免费观看成人av| 中文字幕欧美激情一区| av在线播放成人| 亚洲午夜精品一区二区三区他趣| 粉嫩绯色av一区二区在线观看| 欧美精品日韩精品| 懂色av一区二区三区蜜臀| 亚洲人成伊人成综合网小说| 欧美色图一区二区三区| 精品无码三级在线观看视频| 久久久99精品免费观看不卡| 色综合激情久久| 久久99精品国产麻豆婷婷| 中文欧美字幕免费| 91精品国产色综合久久不卡蜜臀| 七七婷婷婷婷精品国产| 亚洲三级电影全部在线观看高清| 欧美日韩大陆在线| 波多野结衣中文字幕一区二区三区 | 国产精品一区二区在线观看网站| 亚洲女人****多毛耸耸8| 精品第一国产综合精品aⅴ| 99久久精品久久久久久清纯| 国产在线播放一区| 日本91福利区| 久久精品国产成人一区二区三区 | 亚洲蜜臀av乱码久久精品蜜桃| 91精品国产aⅴ一区二区| 91在线观看污| 色哟哟国产精品| 99久久99久久精品免费观看| 成人午夜电影久久影院| 国产精品99久| 99re8在线精品视频免费播放| 国产成人免费高清| 国产精品一区在线观看乱码| 经典三级视频一区| 成人高清av在线| 91免费视频网| 欧美精品xxxxbbbb| 欧美成人video| av一二三不卡影片| 91视频.com| 日韩欧美一二三区| 国产无一区二区| 亚洲综合区在线| 精品一二线国产| 欧美亚洲一区三区| 国产人伦精品一区二区| 一片黄亚洲嫩模| 国产成人日日夜夜| 欧美精品三级日韩久久| 国产精品视频九色porn| 香蕉乱码成人久久天堂爱免费| 久久成人免费网站| 丁香六月久久综合狠狠色| 欧美日韩一区二区三区不卡| 国产精品久久久久婷婷二区次| 亚洲图片你懂的| 欧美精品乱码久久久久久| 综合婷婷亚洲小说| 亚洲精品成a人| 一区二区三区在线免费播放| 亚洲精品精品亚洲| 国产精品欧美综合在线| 国产日本欧洲亚洲| 樱桃国产成人精品视频| 国产精品综合网| 欧美在线一区二区三区| 欧洲激情一区二区| 精品剧情v国产在线观看在线| 日韩免费观看高清完整版| 亚洲欧美日韩系列| 91麻豆精品在线观看| 一区二区三区四区不卡视频| 99热99精品| 亚洲色图都市小说| 国产v日产∨综合v精品视频| 欧美一区二区三区四区久久| 麻豆精品在线看| 日韩一区二区三| 青青草精品视频| 日韩午夜在线影院| 成人精品国产一区二区4080| 亚洲国产成人91porn| 欧美电视剧在线看免费| av在线不卡网| 亚洲国产成人tv| 欧美精品一区二区三| 国产在线麻豆精品观看| 日本一二三四高清不卡| 91免费在线播放| 奇米影视在线99精品| 国产精品萝li| 精品国产乱码久久久久久蜜臀| 成人一级黄色片| 日韩福利电影在线观看| 国产女主播一区| 欧美日韩你懂的| 久久精品二区亚洲w码| 26uuu久久综合| 欧美影院午夜播放| 成人av第一页| 成人免费视频网站在线观看| 国产乱子轮精品视频| 亚洲福利视频导航| 日韩有码一区二区三区| 亚洲人xxxx| 国产欧美日产一区| 国产亚洲精久久久久久| 欧美xxxxxxxx| 国产亚洲制服色| 中文字幕精品一区二区三区精品| 欧美日韩在线三级| 欧美精品三级在线观看| 在线播放国产精品二区一二区四区| 丁香五精品蜜臀久久久久99网站 | 欧美高清在线视频| 1区2区3区精品视频| 亚洲区小说区图片区qvod| 亚洲色图色小说| 一区二区不卡在线视频 午夜欧美不卡在 | 亚洲欧美影音先锋| 亚洲天堂2014| 日韩经典中文字幕一区| 激情综合五月婷婷| 成人aa视频在线观看| 欧美性猛片aaaaaaa做受| 欧美亚洲图片小说| 日韩精品一区国产麻豆| 精品国免费一区二区三区| 国产精品久久久久久久久快鸭 | 国产精品一线二线三线精华| www.成人在线| 欧美三级日韩在线| 欧美不卡123| 亚洲视频一区在线观看| 日韩黄色免费电影| 在线影院国内精品| 中文字幕精品一区二区三区精品| 水野朝阳av一区二区三区| av在线不卡观看免费观看| 欧美日韩国产不卡| 国产精品久久久久久久岛一牛影视 | 国产精品理伦片| 久久www免费人成看片高清| 色吧成人激情小说| 中文字幕日韩一区二区| 国产成人av一区二区三区在线观看| 欧美一a一片一级一片| 欧美高清在线精品一区| 国产一区三区三区| 一本大道久久a久久精品综合| 7777精品伊人久久久大香线蕉最新版 | 国产成人av自拍| 欧美日韩免费视频| 亚洲最大成人网4388xx| 日本二三区不卡| 伊人色综合久久天天人手人婷| 欧美日韩国产综合一区二区| 亚洲国产成人av| 91久久国产综合久久| 国产精品进线69影院| 高清beeg欧美| 国产精品免费人成网站| 粉嫩高潮美女一区二区三区| 136国产福利精品导航| 欧美精品一二三| 国产乱妇无码大片在线观看| 日韩美女在线视频| 久久精品二区亚洲w码| 日韩欧美综合一区| 成人性生交大片免费| 日韩一区欧美一区| 日韩欧美国产不卡| 国产一区二区在线免费观看| 日韩一区中文字幕| 欧美成人精品二区三区99精品| 国产成人亚洲综合色影视| 一级中文字幕一区二区| 日韩视频国产视频| 91免费观看国产| 激情深爱一区二区| 亚洲精品中文在线| 久久精品欧美日韩精品| 欧美不卡视频一区| 欧美日韩国产影片| av毛片久久久久**hd| 粉嫩av一区二区三区在线播放| 五月综合激情日本mⅴ| 国产精品女主播av| 久久美女高清视频| 欧美一区二区三区在线电影| 在线欧美日韩国产| 欧美欧美欧美欧美首页|