亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? pbnbayespreds.m

?? Speaker Verification Toolbox
?? M
字號:
function [FB,EB] = pbnBayesPreds(v,k,F,bi)

% [FB,EB] = pbnBayesPreds(v,k,F) - Bayes steady-state predictors for a PBN
%
% Function computes the Bayes steady-state prediction error for all the 
% variables and all the predictor variable combinations. Note that a 
% variable is not allowed to be used as a predictor variable for itself. In
% case of tie, a randomly selected function with the minimum Bayes error is
% returned.
%
% INPUT:
% v     - The stationary distribution of a PBN, i.e., f(1) = 
%         Pr{X = 00...00}, f(2) = Pr{X = 00...01}, ..., f(2^n) = 
%         Pr{X = 11...11}.
% k     - The number of variables used in each predictor function.
% F     - The set of Boolean predictors to be used in the inference. If F 
%         is the empty matrix, then the function class is considered to 
%         contain all k-variable Boolean functions. F is either a
%         (2^k)-by-nf binary matrix or 1-by-nf row vector of integers (see
%         also the description of the next argument bs), where k is the 
%         number of variables in each function and nf is the number of 
%         functions.
%         1.    The case of (2^k)-by-nf binary matrix: Let f = F(:,j) be
%               the j:th column of F (i.e., the j:th truth table in F. 
%               Then, f(0) defines the output value for the input vector
%               00...00, f(1) for the input 00...01, f(2) for the input 
%               00...10, ..., and f(2^k) for the input 11...11. Input 
%               vectors are interpreted such that the left most bit defines
%               the value of the first input variable, the second bit from 
%               the left defines the value of the second input variable, 
%               ..., and the right most bit defines the value of the last 
%               (k:th) input variable.
%         2.    The case of 1-by-nf row vector of integers: Let f = F(j) be
%               the j:th element of F. Then, the first bit (as obtained by 
%               the bitget command bitget(f,1)) defines the output value 
%               for the input vector 00...00, the second bit bitget(f,2) 
%               defines the output for the input 00...01, ..., and the 
%               2^k:th bit bitget(f,2^k) defines the output for the input
%               11...11. Thus, the regular truth table presentation of the
%               j:th function can be obtained by f = bitget(F(j),[1:2^k])'.
%               Note that only the cases k<=5 can be handled by this
%               convention.
% bi    - A bit (0/1) indicating that whether the Boolean functions in F 
%         are represented in the form of standard binary truth tables (0) 
%         or (encoded) integers (1). (This can be used to distinguish between 
%         constant functions and the integer presentations).
% OUTPUT:
% FB    - A 3-D matrix of the Bayes predictors for the all variables and 
%         all the predictor variable combinations. FB has size
%         (2^k)-by-nchoosek(n-1,k)-by-n, where n is the number of variables
%         in the PBN. FB(:,:,i) defines the best functions for the i:th 
%         node. Each column in FB, i.e., FB(:,i,j) is interpreted as the 
%         columns in F (see above).
% EB    - A 2-D matrix of the Bayes errors for all the variables and all 
%         the predictor variable combinations. EB has size 
%         nchoosek(n-1,k)-by-n.

% Functions used: margpdf.m, randintex.m

% 26.08.2005 by Harri L鋒desm鋕i. Modified from pbnBayesPred.m


%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
% Define and initialize some variables.
%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

n = round(log2(length(v))); % The number of nodes.
kk = 2^k; % Needed often.

combnum = nchoosek(n-1,k); % The number of different variable combinations.

% All variable combinations will be generated in advance. Check that he
% number of combinations is "samll" enough. This will work only for small
% enough PBNs.
if combnum>20000 % Limit the number of possible combinations.
    error('Too many variable combinations...')
end % if combnum>20000

starti = 1;
stopi = combnum;

% Initialize the output matrices.
FB = zeros(kk,combnum,n);
EB = zeros(combnum,n);


%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
% The main loop separately for unconstrained and constrained case.
%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% If F is an empty matrix, then the function class is considered to contain
% all k-variables Boolean functions (unconstrained case).
if isempty(F)
    
    % Run through all the nodes.
    for i=1:n
        
        % Generate all variable combinations in advance. Remove the current
        % node (target node) from the set of predictors.
        IAll = nchoosek([1:i-1,i+1:n],k);
        
        %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        % Run through all variable combinations.
        %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        for j=starti:stopi
            
            % The current variable combinations (in lexicographical ordering).
            I = IAll(j,:);
            
            % Compute the corresponding marginal distribution (including
            % the target node itself).
            vv = margpdf(v,[i,I]);
            
            % Find the optimal (Bayes) k-variable predictor for the current
            % input variable combination.
            [OptErr,OptF] = min([vv(1:kk);vv(kk+1:2*kk)]);
            OptF = 2 - OptF;
            % All output bits having tie are set uniformly randomly.
            Ties = (vv(:,1:kk)==vv(:,kk+1:2*kk));
            OptF(Ties) = (rand(1,sum(Ties(:))))>0.5;
            % The corresponding probability of error.
            OptErr = sum(OptErr);
            
            FB(:,j,i) = OptF';
            EB(j,i) = OptErr;
            
        end % for i=starti:stopi
    end % for i=1:n
    
else
    
    % If F is non-empty matrix, then the function class is defined by F.
    
    nf = size(F,2); % The number of functions in F.
    Oneskknf = ones(kk,nf);
    Zeroskknf = zeros(kk,nf);
    Ones1nf = ones(1,nf);
    
    % Run through all the nodes.
    for i=1:n
        
        minerr = realmax; % Keep track of the minimum error.
        
        % Generate all variable combinations in advance. Remove the current
        % node from the set of predictors.
        IAll = nchoosek([1:i-1,i+1:n],k);
        
        %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        % Run through all variable combinations.
        %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        for j=starti:stopi
            
            % The current variable combinations (in lexicographical ordering).
            I = IAll(j,:);
            
            % Compute the corresponding marginal distribution (including
            % the target node itself).
            vv = margpdf(v,[i,I]);
            
            % Compute the error of all the functions.
            Err = sum(F.*(vv(1:kk)'*Ones1nf)) + ...
                sum((1-F).*(vv(kk+1:2*kk)'*Ones1nf));
            
            % Find the optimal (Bayes) k-variable predictor for the current
            % input variable combination.
            OptErr = min(Err);
            
            if OptErr<minerr
                % Select one of the optimal functions randomly.
                ind = find(Err==OptErr);
                ind = ind(randintex(1,1,length(ind)));
                FB(:,i) = F(:,ind);
                varF(:,i) = I';
                EB(i) = OptErr;
                minerr = OptErr;
            end % if OptErr<minerr
                        
        end % for i=starti:stopi
    end % for i=1:n
end % if isempty(F)

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲图片激情小说| 青草av.久久免费一区| 午夜伦理一区二区| 国产盗摄一区二区| 欧美妇女性影城| 欧美激情综合在线| 蜜桃视频一区二区| 色丁香久综合在线久综合在线观看| 日韩视频一区二区三区| 亚洲日穴在线视频| 国产黄色成人av| 日韩一二三区视频| 亚洲第一久久影院| 91啦中文在线观看| 国产精品视频九色porn| 精品一区二区三区影院在线午夜 | 日韩中文字幕亚洲一区二区va在线 | 欧美午夜理伦三级在线观看| 2017欧美狠狠色| 蜜桃久久久久久| 欧美日韩电影在线播放| 亚洲色图欧洲色图| 99在线精品视频| 欧美国产一区二区| 国产乱国产乱300精品| 精品久久免费看| 麻豆成人av在线| 日韩午夜电影av| 男男成人高潮片免费网站| 欧美日韩国产小视频在线观看| 亚洲丝袜另类动漫二区| 成人av网址在线观看| 国产精品久久久久久久久晋中| 国产精品一级黄| 国产日韩精品久久久| 国产精品一二三| 中文字幕二三区不卡| 成人黄色电影在线 | 久久精品国产精品亚洲综合| 欧美一区二区私人影院日本| 日韩vs国产vs欧美| 精品免费视频.| 韩国成人精品a∨在线观看| 亚洲精品一区二区三区四区高清 | 亚洲曰韩产成在线| 欧美综合久久久| 日韩成人av影视| 精品国产一区二区三区久久久蜜月| 国产在线看一区| 国产精品国产三级国产aⅴ无密码 国产精品国产三级国产aⅴ原创 | 偷拍日韩校园综合在线| 717成人午夜免费福利电影| 免费精品视频在线| 久久精品日韩一区二区三区| 国产91富婆露脸刺激对白| 亚洲视频狠狠干| 欧美老女人第四色| 国精产品一区一区三区mba桃花| 国产欧美一区二区三区鸳鸯浴| 懂色中文一区二区在线播放| 亚洲区小说区图片区qvod| 欧美日本视频在线| 国产真实乱对白精彩久久| 最新国产成人在线观看| 欧美久久一区二区| 国产一区二区主播在线| 中文字幕一区二区视频| 精品婷婷伊人一区三区三| 麻豆91精品视频| 亚洲欧洲成人精品av97| 6080日韩午夜伦伦午夜伦| 成人综合婷婷国产精品久久免费| 亚洲永久精品大片| 久久久91精品国产一区二区三区| 99精品国产视频| 免费看欧美女人艹b| 亚洲色图制服诱惑 | 欧美体内she精高潮| 久久se这里有精品| 亚洲精品欧美激情| 久久久影视传媒| 欧美精品日韩综合在线| 成人激情综合网站| 日本sm残虐另类| 亚洲素人一区二区| 26uuu亚洲| 欧美精品电影在线播放| 99免费精品视频| 精品中文av资源站在线观看| 中文字幕一区二区三区在线观看| 日韩一卡二卡三卡国产欧美| 色欲综合视频天天天| 国产激情精品久久久第一区二区| 日韩精品午夜视频| 亚洲精品v日韩精品| 国产欧美综合色| 欧美一级二级三级乱码| 欧美三区在线观看| 色综合欧美在线| 成人av在线影院| 国产成人免费视频网站高清观看视频 | 日本黄色一区二区| 成人午夜视频福利| 极品少妇一区二区| 奇米888四色在线精品| 亚洲第一狼人社区| 亚洲国产成人av网| 一区二区在线观看不卡| 成人免费在线播放视频| 国产欧美日本一区视频| 国产亚洲成aⅴ人片在线观看| 精品国产91洋老外米糕| 欧美成人激情免费网| 欧美一区二区精美| 91精品欧美久久久久久动漫| 欧美精品少妇一区二区三区| 欧美人与性动xxxx| 欧美二区三区91| 欧美福利视频一区| 欧美大片一区二区三区| 日韩精品一区二区三区在线| 欧美va亚洲va香蕉在线| 精品国产免费人成在线观看| 欧美大胆一级视频| 久久九九久久九九| 国产精品视频九色porn| 亚洲丝袜精品丝袜在线| 亚洲一级二级在线| 天堂va蜜桃一区二区三区| 日韩极品在线观看| 精品亚洲欧美一区| 国产精品66部| 色综合天天综合在线视频| 欧美做爰猛烈大尺度电影无法无天| 色呦呦国产精品| 欧美日韩精品电影| 日韩欧美高清一区| 国产欧美视频在线观看| 日韩一区日韩二区| 天天色天天爱天天射综合| 久久99蜜桃精品| 9i看片成人免费高清| 欧美性受xxxx黑人xyx性爽| 欧美一级xxx| 亚洲国产经典视频| 亚洲二区视频在线| 美美哒免费高清在线观看视频一区二区| 久久99热99| 一本大道久久a久久精二百| 7777精品伊人久久久大香线蕉经典版下载 | 欧美日韩国产bt| 欧美一级二级三级乱码| 中文字幕第一区第二区| 亚洲综合久久久久| 国内成人免费视频| 成人免费视频国产在线观看| 色综合亚洲欧洲| 久久视频一区二区| 一区二区三区四区在线播放| 美女www一区二区| 91在线小视频| 26uuu精品一区二区三区四区在线 26uuu精品一区二区在线观看 | 亚洲欧洲日韩综合一区二区| 亚洲成人综合在线| 国产suv精品一区二区6| 在线观看成人小视频| 久久久精品影视| 亚洲成人资源网| av在线播放成人| 精品国产百合女同互慰| 亚洲国产精品久久久久秋霞影院 | 91论坛在线播放| 国产午夜精品一区二区三区嫩草| 亚洲国产一区在线观看| 国产成人高清视频| 日韩美一区二区三区| 亚洲午夜激情av| 97se亚洲国产综合自在线| 精品国产乱码久久久久久老虎| 亚洲一区在线观看免费观看电影高清| 国产一区二区久久| 欧美一区二区高清| 无码av免费一区二区三区试看 | 日韩成人av影视| 欧美专区日韩专区| 亚洲色图色小说| caoporen国产精品视频| 精品国产伦一区二区三区免费| 午夜久久久影院| 欧美激情自拍偷拍| 精品午夜一区二区三区在线观看| 欧美色精品在线视频| 一区二区三区四区不卡在线 | 99精品视频在线免费观看| 国产女主播一区| 国产乱理伦片在线观看夜一区| 日韩欧美一级二级| 蜜桃久久精品一区二区| 日韩欧美专区在线| 久久精品国产精品青草|