亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? bnbestfit.m

?? Speaker Verification Toolbox
?? M
?? 第 1 頁 / 共 2 頁
字號:
function [Fhat,Ehat,Et] = bnBestFit(X,Y,w,k,F,bi,Xt,Yt,wt)

% [Fhat,Ehat,Et] = bnBestFit(X,Y,w,k,F,bi,Xt,Yt,wt) - Best-Fit inference
%
% bnBestFit performs a regulatory network inference for a set of variables 
% (genes) under the Boolean network model. The function returns the
% Best-Fit function and the corresponding (non-normalized) error-size for
% all input variable combinations in X and for all the target variables in
% Y. That is, rows in X correspond to predictor variables, and rows in Y
% correspond to  target variables. The i:th variable at the j:th sample (or
% time point), Y(i,j), is predicted based on the value of the predictor 
% variables at the same sample X(:,j). Note that if unity weights (defined 
% in w) are used for all the samples then the found functions are equal to 
% the ones which minimize the resubstitution error on the sample data (i.e,
% histogram rule for discrete data). In such a case, the corresponding 
% error-sizes in Ehat are the (non-normalized) minimum resubstitution
% errors, i.e., the number of errors/misclassifications. In case of tie, a
% random selected function with minimum error-size is returned. If
% additional test data sets (Xt, Yt, and wt) are provided then the
% error-size of the found Best-Fit functions on the test data is computed
% as well. (This can be useful in  the case of different cross-validation
% and bootstrap experiments.)
%
% INPUT:
% X     - Binary input matrix. X(i,:) corresponds to the (binary) values of
%         the i:th predictor variable. Correspondingly, X(:,j) represents 
%         the values of the predictor variables for the j:th sample (or the
%         j:th time point).
% Y     - Binary output matrix. Y(i,:) corresponds to the (binary) values 
%         of i:th target variable. Correspondingly, Y(:,j) represents the 
%         values of the target variables for the j:th sample. In other 
%         words, Y(i,j) is the value of the i:th target variable in the 
%         j:th sample, i.e., the bit that is to be predicted based on
%         X(:,j) (this holds for all i and j).
% w     - Weight vector containing positive weights for the measurements in
%         X and Y. For now, the implementation only allows to define a
%         single weight for each column in X (and Y). In particular, the
%         weight w(i) defines the weight for the i:th input vector (and the
%         corresponding output).
% k     - The (maximum) number of variables in the predictor functions,
%         i.e., indegree.
% F     - The set of Boolean predictors to be used in the inference. If F 
%         is the empty matrix, then the function class is considered to 
%         contain all k-variable Boolean functions. F is either a
%         (2^k)-by-nf binary matrix or 1-by-nf row vector of integers (see
%         also the description of the next argument bs), where k is the 
%         number of variables in each function and nf is the number of 
%         functions.
%         1.    The case of (2^k)-by-nf binary matrix: Let f = F(:,j) be
%               the j:th column of F (i.e., the j:th truth table in F. 
%               Then, f(0) defines the output value for the input vector
%               00...00, f(1) for the input 00...01, f(2) for the input 
%               00...10, ..., and f(2^k) for the input 11...11. Input 
%               vectors are interpreted such that the left most bit defines
%               the value of the first input variable, the second bit from 
%               the left defines the value of the second input variable, 
%               ..., and the right most bit defines the value of the last 
%               (k:th) input variable.
%         2.    The case of 1-by-nf row vector of integers: Let f = F(j) be
%               the j:th element of F. Then, the first bit (as obtained by 
%               the bitget command bitget(f,1)) defines the output value 
%               for the input vector 00...00, the second bit bitget(f,2) 
%               defines the output for the input 00...01, ..., and the 
%               2^k:th bit bitget(f,2^k) defines the output for the input
%               11...11. Thus, the regular truth table presentation of the
%               j:th function can be obtained by f = bitget(F(j),[1:2^k])'.
%               Note that only the cases k<=5 can be handled by this
%               convention.
% bi    - A bit (0/1) indicating that whether the Boolean functions in F 
%         are represented in the form of standard binary truth tables (0) 
%         or (encoded) integers (1). (This can be used distinguish between 
%         constant functions and the integer presentations).
% Xt    - [Optional] Input data for a separate test data. Format is the
%         same as for the matrix X (see above).
% Yt    - [Optional] Output data for a separate test data. Format is the
%         same as for the matrix Y (see above).
% wt    - [Optional] Weights for a separate test data. Format is the same
%         as for the matrix w (see above).
%
% OUTPUT:
% Fhat  - A 3-D binary matrix of the Best-Fit functions for each input 
%         variable combinations and for all target variables. Fhat has size
%         (2^k)-by-nchoosek(n,k)-by-ni, where n is the size of the first
%         dimension of matrix X (i.e., the number of predictor variables) 
%         and ni is the number of target variables. Fhat(:,:,i) defines the
%         Best-Fit functions for the i:th node. In particular, Fhat(:,j,i) 
%         defines the Best-Fit function for the i:th variable and for the 
%         j:th variable combination (the j:th variables combination 
%         corresponds to the variables on the j:th row of the matrix
%         nchoosek([1:n],k);). Each column in Fhat(:,:,i) is interpreted as
%         the columns in the binary matrix F (see above the case 1).
% Ehat  - The error-size of the Best-Fit function for all input variable
%         combinations and for all the target variables. Ehat has size
%         nchoosek(n,k)-by-ni. Thus, Ehat(i,j) is the error-size of the
%         Best-Fit function for i:th input variable combination and for the
%         j:th target node.
% Et    - This variable is returned only if Xt, Yt and wt are present in
%         the input. The error-size of the Best-Fit function for all input
%         variable combinations and for all the target variables on the 
%         separate test data.

% 03.04.2003 by Harri L鋒desm鋕i, modified from bnBestFit.
% Modified: May 14, 2003 by HL.
%           25/08/2005 by HL.


%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
% Define and initialize some variables.
%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

[n,m] = size(X); % The number of predictor genes and the number of measurements.
ni = size(Y,1); % The number of (target) genes.

b = 2.^[k-1:-1:0]'; % Powers of two (used in binary-to-decimal convertions).

W = ones(ni,1)*w; % Weights in a matrix form (assume w is a row vector).

kk = 2^k; % Two to the power of k (needed often).

combnum = nchoosek(n,k); % The number of different variable combinations.

% Generate all variable combinations in advance. This will work only for
% moderately small data sets. If one wants to use larger data sets, then
% the input variable combinations can be generated using the function
% nextnchoosek.m (e.g. given an input variable combination, I =
% nextnchoosek(I,n); generates the next variable combination in
% lexicographial order.
if combnum>20000 % Limit the number of possible combinations.
    error('Too many variable combinations. Modify the code a little bit...')
end % if combnum>20000
IAll = nchoosek([1:n],k);

% Modify the variables below if only a subset of all combinations are to be
% checked (e.g. in the case of parallelizing the code...)
starti = 1;
stopi = combnum;

% Initialize the output matrix/matrices.
Fhat = zeros(kk,combnum,ni);
Ehat = zeros(combnum,ni);

% Check that whether additional test data is available.
TestBit = 0;
if nargin==9
    Et = zeros(combnum,ni);
    Wt = ones(ni,1)*wt; % Wt = repmat(w,ni,1);, weights in vector form.
    TestBit = 1;
end % if nargout > 1


%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
% The main loop separately for unconstrained and constrained case.
%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% If F is an empty matrix, then the function class is considered to contain
% all k-variables Boolean functions (unconstrained case).
if isempty(F)
    
    % Two times two to the power of k (needed often).
    kkk = 2*kk;
    
    % This matrix (C01) has the role of c^(0) and c^(1) for all interesting
    % genes. Further, C01 = [c^(0),c^(1)];
    C01 = zeros(ni,kkk);
    %sC01 = size(C01);
        
    %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    % Run through all variable combinations.
    %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    for i=starti:stopi
        
        % The current variable combinations (in lexicographical ordering).
        I = IAll(i,:);
        
        % Initialize again.
        C01 = zeros(ni,kkk);
        
        %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        % Run through all measurements.
        %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        % This loop also takes into account possible multiplisities in
        % measurements, i.e., computes new weights for those measurements
        % that appear several times in T (and/or F).
        for j=1:m
            
            % The current input as a decimal number to be used to index the
            % matrix C01.
            dn = X(I,j)'*b + 1;
            %dn = sum(bitset(0,t1(logical(D(I,IO(1,j)))))) + 1;
            %dn = binarr2dec(D(I,IO(1,j))',b) + 1;
                        
            % Update C01 (c^(0) and c^(1)). First update left half (C0) and
            % then right half (C1)
            C01(logical(1-Y(:,j)),dn) = C01(logical(1-Y(:,j)),dn) + w(j);
            C01(logical(Y(:,j)),kk+dn) = C01(logical(Y(:,j)),kk+dn) + w(j);
            
        end % for j=1:m
        
        % Find the Best-Fit function for all the nodes.
        [OptErr,OptF] = min(cat(3,C01(:,1:kk),C01(:,kk+1:end)),[],3);
        OptF = 2 - OptF';
        
        % All output bits having tie are set uniformly randomly. This also
        % takes care of the undefined bits due to the initialization of
        % matrix C01.
        Ties = (C01(:,1:kk)==C01(:,kk+1:end))';
        OptF(Ties) = (rand(1,sum(Ties(:))))>0.5;
        
        % Store the Best-Fit functions.
        Fhat(:,i,:) = OptF;
        % Store the corresponding (weighted) error-size.
        Ehat(i,:) = sum(OptErr,2)';
        
        
        if TestBit % If the test data is provided
            %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
            % Apply the Best-Fit functions to the test data.
            %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
            % All the inputs on the test data as decimal number.
            dn = Xt(I,:)'*b + 1;
            
            % Output values of the current functions for all the inputs.

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色婷婷综合五月| 这里只有精品视频在线观看| 精品精品欲导航| 另类专区欧美蜜桃臀第一页| 欧美一区二区三区在线观看| 日韩高清国产一区在线| 91精品国产手机| 精品一区二区国语对白| 国产午夜亚洲精品理论片色戒| 国产成人h网站| 亚洲国产成人自拍| 一本久道中文字幕精品亚洲嫩| 亚洲美女一区二区三区| 欧美日韩一级片网站| 日本不卡123| 国产欧美精品一区二区三区四区| 成人自拍视频在线| 亚洲激情一二三区| 制服视频三区第一页精品| 国产毛片精品视频| 国产欧美一区二区在线观看| 成人免费视频一区| 亚洲成年人网站在线观看| 3atv在线一区二区三区| 国产成人无遮挡在线视频| 亚洲另类春色校园小说| 欧美一级欧美三级| 白白色亚洲国产精品| 午夜视频一区在线观看| 国产欧美一区二区精品久导航| 91猫先生在线| 激情综合五月天| 亚洲黄一区二区三区| 精品999在线播放| 91日韩精品一区| 久久精品国产精品亚洲综合| 亚洲日本va在线观看| 日韩一区二区高清| 一本色道a无线码一区v| 精品在线一区二区| 亚洲综合激情小说| 久久精品日韩一区二区三区| 欧美精品在线观看播放| 91在线视频免费观看| 蜜桃一区二区三区在线观看| 国产精品护士白丝一区av| 69av一区二区三区| 色综合久久久久综合体| 国产一区二区在线视频| 无吗不卡中文字幕| 亚洲欧洲另类国产综合| 久久精品夜色噜噜亚洲a∨| 欧美成人a∨高清免费观看| 不卡的av中国片| 国产中文字幕精品| 免费欧美高清视频| 亚洲专区一二三| 中文字幕一区视频| 国产亚洲欧美色| 日韩欧美国产三级| 欧美日韩国产综合草草| 色综合天天综合在线视频| 国产又粗又猛又爽又黄91精品| 日日夜夜精品视频天天综合网| 1000精品久久久久久久久| 国产拍欧美日韩视频二区| 精品美女一区二区| 日韩欧美精品在线| 精品黑人一区二区三区久久| 日韩欧美卡一卡二| 色狠狠色狠狠综合| 成人午夜视频网站| 国产精品66部| 国产精品综合网| 狠狠狠色丁香婷婷综合激情| 日本不卡在线视频| 五月婷婷另类国产| 亚洲一区二区三区四区在线| 夜夜精品视频一区二区| 一区二区中文视频| 亚洲欧洲av色图| 亚洲久草在线视频| 一区二区三区四区高清精品免费观看| 国产精品福利一区二区三区| 国产欧美一区二区三区鸳鸯浴 | 亚洲综合清纯丝袜自拍| 亚洲精品中文字幕在线观看| 亚洲精品免费在线| 亚洲一区二区三区视频在线| 亚洲色欲色欲www| 欧美精品久久一区二区三区| 91色九色蝌蚪| 91网站黄www| 欧美影院一区二区三区| 欧美日韩亚洲综合在线| 91一区二区三区在线播放| 欧美高清视频在线高清观看mv色露露十八| 欧美mv日韩mv亚洲| 欧美丝袜第三区| 日本韩国精品一区二区在线观看| 91视频www| 在线免费视频一区二区| 欧美日韩一区小说| 欧美电影免费观看高清完整版在线 | 亚洲欧美激情小说另类| 亚洲一线二线三线久久久| 午夜激情久久久| 国产精品久久久久7777按摩| 国产色产综合色产在线视频 | 欧美日韩综合在线| 9191成人精品久久| 26uuu欧美| 国产精品久久久久久一区二区三区| 亚洲欧美在线视频| 视频一区在线视频| 国产激情视频一区二区在线观看| www.欧美亚洲| 欧美一区二区在线观看| 久久精品一区二区三区不卡| 亚洲激情图片一区| 蓝色福利精品导航| 91日韩精品一区| 精品免费视频一区二区| 亚洲人123区| 蜜桃传媒麻豆第一区在线观看| 粉嫩aⅴ一区二区三区四区五区| 欧美亚洲免费在线一区| 国产不卡免费视频| 中文字幕在线不卡一区二区三区| 亚洲视频综合在线| 欧美a级理论片| 成人黄色软件下载| 欧美成人猛片aaaaaaa| 亚洲欧美韩国综合色| 久国产精品韩国三级视频| 91欧美激情一区二区三区成人| 日韩欧美国产精品| 亚洲国产精品欧美一二99| 成人小视频免费观看| 欧美一级二级三级蜜桃| 亚洲一二三区在线观看| 成人av网址在线| 精品国内二区三区| 亚洲电影一级片| 91在线观看下载| 中文字幕久久午夜不卡| 蜜臀a∨国产成人精品| 欧美日韩免费高清一区色橹橹 | 在线视频中文字幕一区二区| 国产午夜三级一区二区三| 亚洲自拍偷拍图区| 成人免费毛片app| 久久久久久免费| 日韩国产在线观看一区| 欧洲亚洲国产日韩| 日韩一区有码在线| 国产91清纯白嫩初高中在线观看| 日韩午夜三级在线| 三级在线观看一区二区| 欧美午夜精品一区| 亚洲综合色自拍一区| 91小视频在线免费看| 国产精品毛片久久久久久 | 高清不卡一区二区在线| 日韩网站在线看片你懂的| 五月天久久比比资源色| 欧美日韩高清影院| 樱花草国产18久久久久| 91在线观看地址| 亚洲精选视频免费看| 99在线视频精品| 亚洲美女视频一区| 色婷婷亚洲综合| 亚洲综合色丁香婷婷六月图片| 99re6这里只有精品视频在线观看| 国产精品久久久久久亚洲毛片| 成人黄色软件下载| 1000部国产精品成人观看| 99vv1com这只有精品| 亚洲免费在线观看| 在线看不卡av| 亚洲成av人片在www色猫咪| 欧美精品一级二级三级| 蜜桃久久久久久| 久久亚洲影视婷婷| 成人一级片网址| 亚洲精品视频一区| 欧美老肥妇做.爰bbww视频| 日韩1区2区日韩1区2区| 精品不卡在线视频| 成人精品免费看| 一区二区三区日韩欧美| 51精品国自产在线| 狠狠色丁香婷综合久久| 国产精品欧美精品| 欧美视频在线一区二区三区 | 精品av综合导航| 99在线精品视频| 亚洲不卡在线观看| 精品日本一线二线三线不卡|