亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? pbnbayespred.m

?? Speaker Verification Toolbox
?? M
字號:
function [Fhat,varF,errF] = pbnBayesPred(v,k,F)

% [Fhat,varF,errF] = pbnBayesPred(v,k,F) - Bayes predictors for a PBN
%
% Function finds the best (Bayes) steady-state predictors for each node in
% the network (the node itself is not allowed to be used as predictor node
% for itself). In case of tie, a random selected function with minimum
% error-size is returned. 
% INPUT:
% v - The stationary distribution of a PBN, i.e., f(1) = Pr{X = 00...00},
%     f(2) = Pr{X = 00...01}, ..., f(2^n) = Pr{X = 11...11}.
% k - The number of variables used in each predictor function.
% F - The set of Boolean predictors to be used in the inference. F is a
%     (2^k)-by-nf binary matrix, where k is the number of variables in each
%     function and nf is the number of functions. If F is an empty matrix,
%     then the function class is considered to contain all k-variable
%     Boolean functions. Let f = F(:,j) be the j:th column of F. Then, f(0)
%     defines the output value for input vector 00...00, f(1) for 00...01,
%     f(2) for 00...10, ..., and f(2^k) for 11...11. Input vectors are
%     interpreted such that the k:th (left most) bit defines the value for
%     the first input node/variable, the k-1:th bit defines the value for
%     the second input node, ..., and the first (right most) bit defines
%     the value for the last input node
% OUTPUT:
% Fhat  - A matrix of the Bayes predictors for the all nodes. Fhat has size
%         (2^k)-by-n, where n is the number of nodes in the PBN. Fhat(:,i)
%         defines the best functions for the i:th node. Each column in Fhat
%         is interpreted as the columns in F (see above).
% varF  - A k-by-n matrix which defines the predictor variables of the best
%         predictors. varF(:,i) defines the predictors for the i:th
%         function in F.
% errF  - The true error of the Bayes predictors for all the target nodes.
%         errF is a 1-by-n vector.

% Functions used: margpdf.m randintex.m

% 06.05.2003 by Harri L鋒desm鋕i


%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
% Define and initialize some variables.
%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

n = round(log2(length(v))); % The number of nodes.
kk = 2^k; % Needed often.

combnum = nchoosek(n-1,k); % The number of different variable combinations.

% All variable combinations will be generated in advance. Check that he
% number of combinations is "samll" enough. This will work only for small
% enough PBNs.
if combnum>20000 % Limit the number of possible combinations.
    error('Too many variable combinations...')
end % if combnum>20000

starti = 1;
stopi = combnum;

% Initialize the output matrices.
Fhat = zeros(kk,n);
varF = zeros(k,n);
errF = zeros(1,n);


%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
% The main loop separately for unconstrained and constrained case.
%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% If F is an empty matrix, then the function class is considered to contain
% all k-variables Boolean functions (unconstrained case).
if isempty(F)
    
    % Run through all the nodes.
    for i=1:n
        
        minerr = realmax; % Keep track of the minimum error.
        
        % Generate all variable combinations in advance. Remove the current
        % node (target node) from the set of predictors.
        IAll = nchoosek([1:i-1,i+1:n],k);
        
        %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        % Run through all variable combinations.
        %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        for j=starti:stopi
            
            % The current variable combinations (in lexicographical ordering).
            I = IAll(j,:);
            
            % Compute the corresponding marginal distribution (including
            % the target node itself).
            vv = margpdf(v,[i,I]);
            
            % Find the optimal (Bayes) k-variable predictor for the current
            % input variable combination.
            [OptErr,OptF] = min([vv(1:kk);vv(kk+1:2*kk)]);
            OptF = 2 - OptF;
            % All output bits having tie are set uniformly randomly.
            Ties = (vv(:,1:kk)==vv(:,kk+1:2*kk));
            OptF(Ties) = (rand(1,sum(Ties(:))))>0.5;
            % The corresponding probability of error.
            OptErr = sum(OptErr);
            
            % Keep track of the minimum error.
            if OptErr<minerr
                Fhat(:,i) = OptF';
                varF(:,i) = I';
                errF(i) = OptErr;
                minerr = OptErr;
            end % if OptErr<minerr
            
        end % for i=starti:stopi
    end % for i=1:n
    
else
    
    % If F is non-empty matrix, then the function class is defined by F.
    
    nf = size(F,2); % The number of functions in F.
    Oneskknf = ones(kk,nf);
    Zeroskknf = zeros(kk,nf);
    Ones1nf = ones(1,nf);
    
    % Run through all the nodes.
    for i=1:n
        
        minerr = realmax; % Keep track of the minimum error.
        
        % Generate all variable combinations in advance. Remove the current
        % node from the set of predictors.
        IAll = nchoosek([1:i-1,i+1:n],k);
        
        %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        % Run through all variable combinations.
        %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        for j=starti:stopi
            
            % The current variable combinations (in lexicographical ordering).
            I = IAll(j,:);
            
            % Compute the corresponding marginal distribution (including
            % the target node itself).
            vv = margpdf(v,[i,I]);
            
            % Compute the error of all the functions.
            Err = sum(F.*(vv(1:kk)'*Ones1nf)) + ...
                sum((1-F).*(vv(kk+1:2*kk)'*Ones1nf));
            
            % Find the optimal (Bayes) k-variable predictor for the current
            % input variable combination.
            OptErr = min(Err);
            
            if OptErr<minerr
                % Select one of the optimal functions randomly.
                ind = find(Err==OptErr);
                ind = ind(randintex(1,1,length(ind)));
                Fhat(:,i) = F(:,ind);
                varF(:,i) = I';
                errF(i) = OptErr;
                minerr = OptErr;
            end % if OptErr<minerr
                        
        end % for i=starti:stopi
    end % for i=1:n
end % if isempty(F)

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产高清精品网站| 91网页版在线| 国产精品影视网| 99re这里只有精品视频首页| 欧美中文字幕一区二区三区| 精品国产乱码久久久久久久久| 中文字幕av资源一区| 亚洲乱码日产精品bd| 九一久久久久久| 91成人在线精品| 国产日韩欧美在线一区| 亚洲中国最大av网站| 国产毛片一区二区| 欧美日本在线观看| 国产精品初高中害羞小美女文| 喷水一区二区三区| 欧美亚洲一区二区在线| 国产欧美日韩视频在线观看| 性欧美大战久久久久久久久| 东方aⅴ免费观看久久av| 91福利资源站| 国产三级欧美三级日产三级99| 亚洲成人一区二区| 国产一本一道久久香蕉| 欧美一区二区三区婷婷月色| 中文字幕高清一区| 久久草av在线| 91精品久久久久久久91蜜桃| 亚洲品质自拍视频网站| 国产91精品久久久久久久网曝门| 欧美性生交片4| 自拍偷拍亚洲欧美日韩| 国产成人av影院| 国产亚洲综合性久久久影院| 蜜桃一区二区三区在线观看| 日本精品一区二区三区高清| 国产精品麻豆欧美日韩ww| 国产麻豆精品一区二区| 欧美成人女星排行榜| 午夜av区久久| 欧美猛男超大videosgay| 亚洲摸摸操操av| 在线亚洲高清视频| 亚洲免费大片在线观看| 91麻豆国产自产在线观看| 国产精品理伦片| 成人av网址在线观看| 亚洲欧洲日韩综合一区二区| 成人晚上爱看视频| 国产精品激情偷乱一区二区∴| 国产成人免费xxxxxxxx| 国产亚洲自拍一区| 不卡欧美aaaaa| 中文字幕日韩av资源站| 在线影视一区二区三区| 亚洲成人综合视频| 欧美一级理论片| 亚洲精品一区二区三区在线观看| 久久精品国内一区二区三区| 国产视频一区在线播放| 色呦呦日韩精品| 老司机精品视频线观看86 | 亚洲素人一区二区| 欧美在线观看你懂的| 精品亚洲成a人在线观看| 最新热久久免费视频| 69av一区二区三区| 高清日韩电视剧大全免费| 亚洲一区欧美一区| 久久久一区二区| 欧美天堂一区二区三区| 国产精品正在播放| 亚洲二区在线观看| 国产精品久久久爽爽爽麻豆色哟哟 | 婷婷丁香激情综合| 国产精品视频一区二区三区不卡| 欧美日韩三级在线| 国产黄色成人av| 日韩av一级片| 亚洲精品中文在线影院| 久久亚洲一区二区三区明星换脸| 一本大道久久a久久精二百| 久久9热精品视频| 亚洲一区二区精品久久av| 亚洲国产高清在线| 日韩欧美成人激情| 欧美日韩精品一区二区三区四区| 国产不卡视频在线观看| 男女激情视频一区| 亚洲123区在线观看| 亚洲视频一区二区在线| 国产欧美日韩综合精品一区二区 | 婷婷亚洲久悠悠色悠在线播放 | 久久精品日产第一区二区三区高清版| 欧美日韩一区二区在线观看| 成人av在线影院| 国产成人在线视频播放| 精品一区二区三区免费| 日本美女一区二区| 亚洲成av人影院| 亚洲一区二区三区四区中文字幕| 亚洲欧洲国产日本综合| 欧美激情在线看| 国产三区在线成人av| 久久久久久麻豆| 国产欧美一区二区精品性| 精品国产乱码久久久久久图片 | 亚洲国产日韩一级| 一区二区三区不卡视频| 亚洲男人天堂av| 亚洲欧美二区三区| 亚洲综合视频网| 午夜伊人狠狠久久| 午夜久久久影院| 天天av天天翘天天综合网色鬼国产 | 欧美日韩高清一区二区三区| 在线精品视频免费播放| 在线精品视频一区二区三四| 在线免费视频一区二区| 欧美日韩视频一区二区| 欧美一区二区精品| 精品国产污污免费网站入口 | 风间由美中文字幕在线看视频国产欧美 | 精品欧美一区二区久久| 精品久久久网站| wwwwxxxxx欧美| 久久你懂得1024| 国产精品久久影院| 亚洲麻豆国产自偷在线| 天天影视网天天综合色在线播放| 亚洲18女电影在线观看| 精品一区二区三区免费视频| 国产成人免费视频一区| 色综合天天综合| 欧美日韩亚洲综合| 久久久久久久久免费| 成人欧美一区二区三区小说| 性久久久久久久久久久久| 久久国产欧美日韩精品| 成人高清伦理免费影院在线观看| 91视视频在线观看入口直接观看www | 日韩一区二区三区免费观看| 精品国产免费人成电影在线观看四季| 国产人成一区二区三区影院| 一区二区三区国产精华| 琪琪一区二区三区| 成人免费毛片a| 欧美精品一二三| 久久久久久97三级| 亚洲成人手机在线| 国产成人精品aa毛片| 777精品伊人久久久久大香线蕉| 国产性天天综合网| 五月天婷婷综合| eeuss鲁片一区二区三区在线观看| 欧美日本精品一区二区三区| 国产三区在线成人av| 午夜av区久久| 一本色道久久综合狠狠躁的推荐| 欧美成人a视频| 亚洲成人av一区二区| 成人高清视频在线观看| 日韩精品一区二区三区中文精品| 国产精品日韩成人| 蜜桃av一区二区| 欧美中文字幕一二三区视频| 国产精品丝袜在线| 久久se精品一区精品二区| 欧美亚洲禁片免费| 中文字幕一区av| 国产精品综合一区二区| 欧美一区二区三区在线观看| 亚洲自拍偷拍综合| 99国产精品国产精品毛片| 国产亚洲福利社区一区| 视频一区中文字幕| 欧美影视一区在线| 亚洲色图色小说| 国产**成人网毛片九色| 精品国产免费一区二区三区四区| 亚洲国产成人av网| 在线观看免费一区| 亚洲欧美另类久久久精品2019| 丁香六月久久综合狠狠色| 精品国产一区二区三区不卡 | 奇米在线7777在线精品| 欧美亚洲高清一区| 亚洲激情网站免费观看| 成人激情免费电影网址| 欧美国产激情二区三区| 国产suv精品一区二区883| 久久综合久久久久88| 九九热在线视频观看这里只有精品| 欧美疯狂性受xxxxx喷水图片| 亚洲综合免费观看高清完整版 | 欧美大白屁股肥臀xxxxxx| 午夜精品久久久久久久99水蜜桃| 色综合久久综合网97色综合| 亚洲日本青草视频在线怡红院| jlzzjlzz欧美大全|