亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? minimax.qbk

?? Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
?? QBK
字號:
[section:minimax Minimax Approximations and the Remez Algorithm]The directory libs/math/minimax contains a command line drivenprogram for the generation of minimax approximations using the Remezalgorithm.  Both polynomial and rational approximations are supported,although the latter are tricky to converge: it is not uncommon forconvergence of rational forms to fail.  No such limitations are presentfor polynomial approximations which should always converge smoothly.It's worth stressing that developing rational approximations to functionsis often not an easy task, and one to which many books have been devoted.To use this tool, you will need to have a reasonable grasp of what the Remezalgorithm is, and the general form of the approximation you want to achieve.Unless you already familar with the Remez methodyou should first read the [link math_toolkit.backgrounders.remez brief background article explaining the principals behind the Remez algorithm].The program consists of two parts:[variablelist[[main.cpp][Contains the command line parser, and all the calls to the Remez code.]][[f.cpp][Contains the function to approximate.]]]Therefore to use this tool, you must modify f.cpp to return the function toapproximate.  The tools supports multiple function approximations withinthe same compiled program: each as a separate variant:   NTL::RR f(const NTL::RR& x, int variant);   Returns the value of the function /variant/ at point /x/.  So if youwish you can just add the function to approximate as a new variantafter the existing examples.In addition to those two files, the program needs to be linked toa [link math_toolkit.using_udt.use_ntl patched NTL library to compile].Note that the function /f/ must return the rational part of theapproximation: for example if you are approximating a function/f(x)/ then it is quite common to use:      f(x) = g(x)(Y + R(x))where /g(x)/ is the dominant part of /f(x)/, /Y/ is some constant, and/R(x)/ is the rational approximation part, usually optimised for a lowabsolute error compared to |Y|.In this case you would define /f/ to return ['f(x)/g(x)] and then set they-offset of the approximation to /Y/ (see command line options below).Many other forms are possible, but in all cases the objective is to split /f(x)/ into a dominant part that you can evaluate easily usingstandard math functions, and a smooth and slowly changing rational approximationpart.  Refer to your favourite textbook for more examples.Command line options for the program are as follows:[variablelist[[variant N][Sets the current function variant to N.  This allows multiple functions             that are to be approximated to be compiled into the same executable.             Defaults to 0.]][[range a b][Sets the domain for the approximation to the range \[a,b\], defaults             to \[0,1\].]] [[relative][Sets the Remez code to optimise for relative error.  This is the default            at program startup.  Note that relative error can only be used            if f(x) has no roots over the range being optimised.]][[absolute][Sets the Remez code to optimise for absolute error.]][[pin \[true|false\]]["Pins" the code so that the rational approximation                     passes through the origin.  Obviously only set this to                     /true/ if R(0) must be zero.  This is typically used when                     trying to preserve a root at \[0,0\] while also optimising                      for relative error.]][[order N D][Sets the order of the approximation to /N/ in the numerator and /D/            in the denominator.  If /D/ is zero then the result will be a polynomial            approximation.  There will be N+D+2 coefficients in total, the first            coefficient of the numerator is zero if /pin/ was set to true, and the            first coefficient of the denominator is always one.]][[working-precision N][Sets the working precision of NTL::RR to /N/ binary digits.  Defaults to 250.]][[target-precision N][Sets the precision of printed output to /N/ binary digits:                set to the same number of digits as the type that will be used to               evaluate the approximation.  Defaults to 53 (for double precision).]][[skew val]["Skews" the initial interpolated control points towards one            end or the other of the range.  Positive values skew the            initial control points towards the left hand side of the            range, and negative values towards the right hand side.            If an approximation won't converge (a common situation)            try adjusting the skew parameter until the first step yields            the smallest possible error.  /val/ should be in the range            \[-100,+100\], the default is zero.]][[brake val][Sets a brake on each step so that the change in the             control points is braked by /val%/.  Defaults to 50,            try a higher value if an approximation won't converge,            or a lower value to get speedier convergence.]][[x-offset val][Sets the x-offset to /val/: the approximation will            be generated for `f(S * (x + X)) + Y` where /X/ is the             x-offset, /S/ is the x-scale            and /Y/ is the y-offset.  Defaults to zero.  To avoid            rounding errors, take care to specify a value that can            be exactly represented as a floating point number.]][[x-scale val][Sets the x-scale to /val/: the approximation will            be generated for `f(S * (x + X)) + Y` where /S/ is the             x-scale, /X/ is the x-offset            and /Y/ is the y-offset.  Defaults to one.  To avoid            rounding errors, take care to specify a value that can            be exactly represented as a floating point number.]][[y-offset val][Sets the y-offset to /val/: the approximation will            be generated for `f(S * (x + X)) + Y` where /X/             is the x-offset, /S/ is the x-scale            and /Y/ is the y-offset.  Defaults to zero.  To avoid            rounding errors, take care to specify a value that can            be exactly represented as a floating point number.]][[y-offset auto][Sets the y-offset to the average value of f(x)            evaluated at the two endpoints of the range plus the midpoint            of the range.  The calculated value is deliberately truncated             to /float/ precision (and should be stored as a /float/             in your code).  The approximation will            be generated for `f(x + X) + Y` where /X/ is the x-offset            and /Y/ is the y-offset.  Defaults to zero.]][[graph N][Prints N evaluations of f(x) at evenly spaced points over the            range being optimised.  If unspecified then /N/ defaults            to 3.  Use to check that f(x) is indeed smooth over the range            of interest.]][[step N][Performs /N/ steps, or one step if /N/ is unspecified.         After each step prints: the peek error at the extrema of         the error function of the approximation,          the theoretical error term solved for on the last step,         and the maximum relative change in the location of the         Chebyshev control points.  The approximation is converged on the         minimax solution when the two error terms are (approximately)         equal, and the change in the control points has decreased to         a suitably small value.]][[test \[float|double|long\]][Tests the current approximation at float,         double, or long double precision.  Useful to check for rounding         errors in evaluating the approximation at fixed precision.         Tests are conducted at the extrema of the error function of the         approximation, and at the zeros of the error function.]][[test \[float|double|long\] N] [Tests the current approximation at float,         double, or long double precision.  Useful to check for rounding         errors in evaluating the approximation at fixed precision.         Tests are conducted at N evenly spaced points over the range         of the approximation.  If none of \[float|double|long\] are specified         then tests using NTL::RR, this can be used to obtain the error         function of the approximation.]][[rescale a b][Takes the current Chebeshev control points, and rescales them         over a new interval \[a,b\].  Sometimes this can be used to obtain         starting control points for an approximation that can not otherwise be         converged.]][[rotate][Moves one term from the numerator to the denominator, but keeps the         Chebyshev control points the same.  Sometimes this can be used to obtain         starting control points for an approximation that can not otherwise be         converged.]][[info][Prints out the current approximation: the location of the zeros of the         error function, the location of the Chebyshev control points, the         x and y offsets, and of course the coefficients of the polynomials.]]] [endsect][/section:minimax Minimax Approximations and the Remez Algorithm][/   Copyright 2006 John Maddock and Paul A. Bristow.  Distributed under the Boost Software License, Version 1.0.  (See accompanying file LICENSE_1_0.txt or copy at  http://www.boost.org/LICENSE_1_0.txt).]

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色综合久久久久网| 蜜乳av一区二区| 成人小视频免费观看| 精品久久久久久久久久久久久久久| 五月婷婷久久综合| 日韩一区二区三区高清免费看看| 人禽交欧美网站| 精品毛片乱码1区2区3区 | 免费观看在线综合色| 欧美精品乱人伦久久久久久| 天天影视涩香欲综合网| 欧美一区二区三区日韩| 激情综合网av| 国产精品乱码一区二区三区软件| 99久久99久久综合| 午夜电影一区二区三区| 欧美本精品男人aⅴ天堂| 国产风韵犹存在线视精品| 中文字幕电影一区| 欧美日韩亚洲综合在线| 久久精品国产免费| 国产精品毛片高清在线完整版 | 91女人视频在线观看| 亚洲国产精品尤物yw在线观看| 日韩一级欧美一级| 成a人片亚洲日本久久| 亚洲高清免费在线| 久久美女艺术照精彩视频福利播放| 成人午夜av电影| 亚洲午夜久久久久中文字幕久| 日韩视频一区二区在线观看| 丁香激情综合五月| 视频在线观看91| 亚洲国产精品传媒在线观看| 欧美日韩在线综合| 丁香婷婷综合色啪| 日本三级韩国三级欧美三级| 国产精品女人毛片| 日韩欧美综合一区| 色吊一区二区三区| 国产91清纯白嫩初高中在线观看| 国产盗摄精品一区二区三区在线| 亚洲欧美日韩中文字幕一区二区三区 | 欧美日韩亚洲不卡| 国产成人自拍网| 日韩成人午夜电影| 亚洲三级电影网站| 国产亚洲精品福利| 3atv在线一区二区三区| 不卡的电视剧免费网站有什么| 日韩高清国产一区在线| 成人欧美一区二区三区小说| 精品va天堂亚洲国产| 欧美天堂一区二区三区| 不卡的av在线| 国内精品自线一区二区三区视频| 性做久久久久久| 亚洲色图视频免费播放| 国产肉丝袜一区二区| 欧美一区二区大片| 欧美精品日韩一本| 精品视频999| 91官网在线观看| 99riav久久精品riav| 国产成人一区二区精品非洲| 久久国产成人午夜av影院| 亚洲成人动漫在线免费观看| 亚洲视频网在线直播| 国产欧美日本一区视频| 精品福利视频一区二区三区| 欧美一级免费观看| 在线不卡的av| 欧美精品一二三| 欧美三区在线观看| 欧美日韩综合不卡| 欧美日韩一区二区不卡| 在线亚洲人成电影网站色www| 91亚洲精品久久久蜜桃网站 | 国产欧美日韩不卡| 亚洲国产精品t66y| 国产精品久久久久9999吃药| 中文字幕国产一区二区| 国产欧美精品一区二区色综合| 久久久精品人体av艺术| 亚洲精品在线一区二区| 久久久青草青青国产亚洲免观| 亚洲精品一区二区三区99| 亚洲精品在线电影| 久久久精品免费观看| 欧美国产日韩一二三区| 国产精品久久久久久久久免费相片| 国产精品免费网站在线观看| 国产精品人妖ts系列视频| 日韩一区在线播放| 亚洲综合小说图片| 日本中文在线一区| 国产美女精品一区二区三区| 岛国精品在线观看| 色噜噜狠狠成人网p站| 欧美精品久久天天躁| 日韩精品一区二区三区视频在线观看 | 91丨porny丨中文| 欧美视频一区二区| 日韩一区二区不卡| 中文字幕精品三区| 亚洲高清视频中文字幕| 久久国产剧场电影| www.亚洲精品| 欧美日本乱大交xxxxx| 精品电影一区二区| 亚洲日本在线天堂| 日韩av成人高清| 成人h动漫精品| 欧美日韩高清不卡| 国产日韩欧美亚洲| 一区二区三区色| 狠狠色丁香久久婷婷综合丁香| 成人免费精品视频| 欧美高清精品3d| 亚洲国产精品二十页| 亚洲bdsm女犯bdsm网站| 国产九九视频一区二区三区| 色综合天天综合网天天看片| 日韩视频一区在线观看| 亚洲色图在线看| 激情综合一区二区三区| 91黄视频在线观看| 久久精品网站免费观看| 亚洲国产精品欧美一二99| 国产成人精品一区二区三区四区 | 国产 欧美在线| 欧美人与禽zozo性伦| 国产欧美日韩在线观看| 日本欧美一区二区三区乱码| 懂色av中文字幕一区二区三区| 在线播放欧美女士性生活| 国产精品久久毛片a| 免费观看在线色综合| 日本乱人伦aⅴ精品| 久久久影视传媒| 日本不卡视频在线| 色网综合在线观看| 亚洲国产成人在线| 精久久久久久久久久久| 欧美情侣在线播放| 亚洲另类春色校园小说| 国产成人免费在线视频| 日韩精品在线一区| 天天操天天综合网| 欧美色图一区二区三区| 亚洲欧洲在线观看av| 国产精品18久久久久| 日韩欧美一区在线| 91小视频在线| 久久久亚洲高清| 久草在线在线精品观看| 欧美一区二区私人影院日本| 亚洲夂夂婷婷色拍ww47| 91猫先生在线| 亚洲欧美自拍偷拍色图| www.亚洲色图| 中文字幕一区二区三中文字幕| 国产高清久久久| 国产亚洲综合性久久久影院| 精品一区二区影视| 国内精品伊人久久久久影院对白| av男人天堂一区| 国产欧美精品一区aⅴ影院| 亚洲福利视频三区| 日本高清免费不卡视频| 最新日韩在线视频| 99视频一区二区三区| 中文字幕一区二区在线播放| 成人免费毛片嘿嘿连载视频| 国产欧美一区二区在线| 东方aⅴ免费观看久久av| 中文字幕免费一区| 99久久久精品| 一区二区免费在线| 欧美嫩在线观看| 久久精品国产澳门| 国产校园另类小说区| 成人av在线观| 亚洲美女免费视频| 欧美日韩在线直播| 另类中文字幕网| 国产日产欧美精品一区二区三区| 国产精品亚洲成人| 日韩理论片在线| 欧美日免费三级在线| 蜜桃av一区二区| 欧美极品xxx| 欧洲亚洲精品在线| 日本va欧美va瓶| 日本一区二区三区四区在线视频| 99久久er热在这里只有精品15 | 亚洲欧美综合色| 欧美三级欧美一级| 久久99国产乱子伦精品免费| 中文字幕国产一区二区|