?? wtaudiorecord.c
字號:
#include <stdio.h>#include <stdlib.h>#include <string.h>#include <sys/socket.h>#include <sys/stat.h>#include <sys/types.h>#include <netinet/in.h>#include <arpa/inet.h>#include <errno.h>#include <netdb.h>#include <sys/types.h>#include <sys/wait.h>#include <time.h>#include <sys/time.h>#include <signal.h>#include <unistd.h>#include <fcntl.h>#include <malloc.h>#include <sys/mman.h>#include <sys/ioctl.h>#include <signal.h>#define _AUDIO_ADPCM_ //#define _AUDIO_PCM_ //#define _AUDIO_UPCM_ //#define _AUDIO_APCM_ //define global varibleint AudioID; #define AUDIO_RECODE // for recoder//#define AUDIO_PLAYBACK // for audio playback#define DWORD unsigned long#define BYTE unsigned char#define WORD unsigned short#define INDATA_T unsigned short#define OUTDATA_T unsigned longtypedef void AU_SEND(void* indata, OUTDATA_T* outdata,int nSrcSize, BYTE *private);#define R4(indata, x) (indata>>((x-1)*4))//***************************************************************//*** for debug **#define DEBUG 1#ifdef DEBUG#define PDEBUG(fmt, args...) printf(fmt,##args)#define KDEBUG(fmt, args...) printk("KDEBUG: "fmt, ##args)#else#define PDEBUG(fmt, args...)#define KDEBUG(fmt, args...)#endif//***************************************************************#define VIDEOBLOCKNUM (1024) #define VIDEOPACKSIZE (528)#define VIDEOBUFSIZE (sizeof(char)*VIDEOBLOCKNUM*VIDEOPACKSIZE)#define LEAFLET (8) //READ LEAFLET PACKAGE FORM VIDEO DRIVER#define APACKCOUNT (512) //(AUDIOBUFSIZE/ADSAMP_PER_PACK)#define ADSAMP_PER_PACK ((508-4)*2+1) // 1009#define USAMP_PER_PACK (508)#define APCMPACKSIZE (508)//#define UPCMPACKSIZE ((508-4)*2+1)#define AUDIOBUFSIZE (APACKCOUNT*ADSAMP_PER_PACK)//#define AUDIOPACKSIZE (PACKSIZE*8)#define DELAY (2)#define RECODERSIZE (4*120)#define AUDIO_ENCODING_ULAW (1) /* ISDN u-law */#define AUDIO_ENCODING_ALAW (2) /* ISDN A-law */#define AUDIO_ENCODING_LINEAR (3) /* PCM 2's-complement (0-center) */#define AUDIO_ENCODING_ADPCM (4) /*IMA ADPCM */#define BUFFERINC(x,y,z) ((x+y)%z) //z: num of package y: inc x: indicate//**************************************************typedef struct WTAudioStream{ int coding; AU_SEND *AudioSend; BYTE * destBuffer; int destBufSize; int nDestTag; int nOutPSize; //send package size char *private; }WTAudioStream;typedef struct WTMediaStream{ BYTE * srcBuffer; int srcBufSize; int nSrcTag; int nInPSize; //send package size int nInBSize; WORD ChnNo; WORD MediaType; WORD FrameSize;}WTMediaStream;// audio devicetypedef struct WTAudio_dev{ int major; int tx_irq; int tx_nBufT; int tx_nBufB; int tx_nDmaStart; int tx_nDmaCount; //unsigned long SysDelay; unsigned long mmstart; //buffer base addr unsigned long mmsize; //buffer size = packsize*packcount unsigned long dmasize; //dma buffer size = packsize*dmasize unsigned long packsize; //adpcm:1009 upcm: 508 unsigned long mmcount; // mmsize/packsize unsigned long dmacount; // dmssize/packsize#ifdef AUDIO_RECODE int rx_nBufT; int rx_nBufB; //int rx_nDmaCount; unsigned long rxmmstart; //mmstart+mmsize unsigned long rxmmsize; // unsigned long rxpacksize; // unsigned long rxmmcount; //rxmmsize/rxpacksize#endif}WTAudio_dev;typedef struct WTDevBufStatus{ int tx_nBufT; int tx_nBufB; int tx_nDmaStart;}WTDevBufStatus;//**************************//unsigned char *VBuffer; //video buffer map from kernel (wtmpeg)//unsigned char *ABuffer; //audio buffer map from kernel (wtaudio)//int nVRD = 0; //indicate the read offset from video buffer base//int nAWR = 0;//WTMediaStream VU_Stream = // {NULL,VIDEOBUFSIZE,0,VIDEOPACKSIZE,LEAFLET,0,0,0};//**************************//*************************************//** audio ioctl ***#define IOC_MAGIC ('k')#define IOCASTOP _IO(IOC_MAGIC,0)#define IOCASTART _IO(IOC_MAGIC,1)#define IOCASPACKSIZE _IOW(IOC_MAGIC,2,int)#define IOCAGDEVBUFSTATUS _IOR(IOC_MAGIC,3,sizeof(WTDevBufStatus))#define IOCAGDEVSTATUS _IOR(IOC_MAGIC,4,sizeof(WTAudio_dev)) #define IOCASRXSTART _IO(IOC_MAGIC,5)//#define IOCASDELAYSIZE _IOW(IOC_MAGIC,5,int)//** video ioctl ***#define IOCVGSTATUE _IOR(IOC_MAGIC,0,int)/***************************************************///******************************************//*** globe Function ****//******************************************// Big-endian <==> Little-endian#ifdef _REVERSE_#define Reverse16(r) (((WORD)r<<8)|((WORD)r>>8))#else#define Reverse16(r) (r)#endif//*** pointer for mem space#define mcf32p(r) ((DWORD *) (r))#define mcf16p(r) ((WORD *) (r))#define mcf8p(r) ((BYTE *) (r))//*** pointer for mbar register#define mcfReg32p(r) (mcf32p(MCF_MBAR + (r)))#define mcfReg16p(r) (mcf16p(MCF_MBAR + (r)))#define mcfReg8p(r) (mcf8p(MCF_MBAR + (r)))#ifdef _MCF5249_//*** pointer for 5249 mbar2 register#define mcf2Reg32p(r) (mcf32p(MCF_MBAR2 + (r)))#define mcf2Reg16p(r) (mcf16p(MCF_MBAR2 + (r)))#define mcf2Reg8p(r) (mcf8p(MCF_MBAR2 + (r)))#endif/**********************************************************//*** auido decoder/encoder */#define AUDIO_ENCODING_ULAW (1) /* ISDN u-law */#define AUDIO_ENCODING_ALAW (2) /* ISDN A-law */#define AUDIO_ENCODING_LINEAR (3) /* PCM 2's-complement (0-center) */#define AUDIO_ENCODING_ADPCM (4) /*IMA ADPCM *//* * g711.c * * u-law, A-law and linear PCM conversions. */#define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */#define QUANT_MASK (0xf) /* Quantization field mask. */#define NSEGS (8) /* Number of A-law segments. */#define SEG_SHIFT (4) /* Left shift for segment number. */#define SEG_MASK (0x70) /* Segment field mask. */#define CLIP (8159)static short seg_end[8] = {0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF};static short seg_aend[8] = {0x1F, 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF};static short seg_uend[8] = {0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF};/* copy from CCITT G.711 specifications */unsigned char _u2a[128] = { /* u- to A-law conversions */ 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128};unsigned char _a2u[128] = { /* A- to u-law conversions */ 1, 3, 5, 7, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 48, 49, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127};static intsearch( int val, short *table, int size){ int i; for (i = 0; i < size; i++) { if (val <= *table++) return (i); } return (size);}/* * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law * * linear2alaw() accepts an 16-bit integer and encodes it as A-law data. * * Linear Input Code Compressed Code * ------------------------ --------------- * 0000000wxyza 000wxyz * 0000001wxyza 001wxyz * 000001wxyzab 010wxyz * 00001wxyzabc 011wxyz * 0001wxyzabcd 100wxyz * 001wxyzabcde 101wxyz * 01wxyzabcdef 110wxyz * 1wxyzabcdefg 111wxyz * * For further information see John C. Bellamy's Digital Telephony, 1982, * John Wiley & Sons, pps 98-111 and 472-476. */unsigned charlinear2alaw( int pcm_val) /* 2's complement (16-bit range) */{ int mask; int seg; unsigned char aval; if (pcm_val >= 0) { mask = 0xD5; /* sign (7th) bit = 1 */ } else { mask = 0x55; /* sign bit = 0 */ pcm_val = -pcm_val - 8; } /* Convert the scaled magnitude to segment number. */ seg = search(pcm_val, seg_end, 8); /* Combine the sign, segment, and quantization bits. */ if (seg >= 8) /* out of range, return maximum value. */ return (0x7F ^ mask); else { aval = seg << SEG_SHIFT; if (seg < 2) aval |= (pcm_val >> 4) & QUANT_MASK; else aval |= (pcm_val >> (seg + 3)) & QUANT_MASK; return (aval ^ mask); }}/* * alaw2linear() - Convert an A-law value to 16-bit linear PCM * */intalaw2linear( unsigned char a_val){ int t; int seg; a_val ^= 0x55; t = (a_val & QUANT_MASK) << 4; seg = ((unsigned)a_val & SEG_MASK) >> SEG_SHIFT; switch (seg) { case 0: t += 8; break; case 1: t += 0x108; break; default: t += 0x108; t <<= seg - 1; } return ((a_val & SIGN_BIT) ? t : -t);}#define BIAS (0x84) /* Bias for linear code. *//* * linear2ulaw() - Convert a linear PCM value to u-law * * In order to simplify the encoding process, the original linear magnitude * is biased by adding 33 which shifts the encoding range from (0 - 8158) to * (33 - 8191). The result can be seen in the following encoding table: * * Biased Linear Input Code Compressed Code * ------------------------ --------------- * 00000001wxyza 000wxyz * 0000001wxyzab 001wxyz * 000001wxyzabc 010wxyz * 00001wxyzabcd 011wxyz * 0001wxyzabcde 100wxyz * 001wxyzabcdef 101wxyz * 01wxyzabcdefg 110wxyz * 1wxyzabcdefgh 111wxyz * * Each biased linear code has a leading 1 which identifies the segment * number. The value of the segment number is equal to 7 minus the number * of leading 0's. The quantization interval is directly available as the * four bits wxyz. * The trailing bits (a - h) are ignored. * * Ordinarily the complement of the resulting code word is used for * transmission, and so the code word is complemented before it is returned. * * For further information see John C. Bellamy's Digital Telephony, 1982, * John Wiley & Sons, pps 98-111 and 472-476. */static inline unsigned charlinear2ulaw(short pcm_val) /* 2's complement (16-bit range) */{ short mask; short seg; unsigned char uval; /* Get the sign and the magnitude of the value. */ pcm_val = pcm_val >> 2; if (pcm_val < 0) { pcm_val = -pcm_val; mask = 0x7F; } else { mask = 0xFF; } if ( pcm_val > CLIP ) pcm_val = CLIP; /* clip the magnitude */ pcm_val += (BIAS >> 2); /* Convert the scaled magnitude to segment number. */ seg = search(pcm_val, seg_uend, 8); /* * Combine the sign, segment, quantization bits; * and complement the code word. */ if (seg >= 8) /* out of range, return maximum value. */ return (unsigned char) (0x7F ^ mask); else { uval = (unsigned char) (seg << 4) | ((pcm_val >> (seg + 1)) & 0xF); return (uval ^ mask); }}/* * ulaw2linear() - Convert a u-law value to 16-bit linear PCM * * First, a biased linear code is derived from the code word. An unbiased * output can then be obtained by subtracting 33 from the biased code. * * Note that this function expects to be passed the complement of the * original code word. This is in keeping with ISDN conventions. */intulaw2linear( unsigned char u_val){ int t; /* Complement to obtain normal u-law value. */ u_val = ~u_val; /* * Extract and bias the quantization bits. Then * shift up by the segment number and subtract out the bias. */ t = ((u_val & QUANT_MASK) << 3) + BIAS; t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT; return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS));}/* A-law to u-law conversion */unsigned charalaw2ulaw( unsigned char aval){ aval &= 0xff; return ((aval & 0x80) ? (0xFF ^ _a2u[aval ^ 0xD5]) : (0x7F ^ _a2u[aval ^ 0x55]));}/* u-law to A-law conversion */unsigned charulaw2alaw( unsigned char uval){ uval &= 0xff; return ((uval & 0x80) ? (0xD5 ^ (_u2a[0xFF ^ uval] - 1)) : (0x55 ^ (_u2a[0x7F ^ uval] - 1)));}//*******************************************/** IMA ADPCM*/#define CLAMP_TO_SHORT(value) \if (value > 32767) \ value = 32767; \else if (value < -32768) \ value = -32768; \/* Intel ADPCM step variation table */static int indexTable[16] = { -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8,};static int stepsizeTable[89] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -