亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? trainer.h

?? Gaussian Mixture Algorithm
?? H
字號(hào):
/*************************************************************************** *   Copyright (C) 2008 by Yann LeCun and Pierre Sermanet  * *   yann@cs.nyu.edu, pierre.sermanet@gmail.com   * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: *     * Redistributions of source code must retain the above copyright *       notice, this list of conditions and the following disclaimer. *     * Redistributions in binary form must reproduce the above copyright *       notice, this list of conditions and the following disclaimer in the *       documentation and/or other materials provided with the distribution. *     * Redistribution under a license not approved by the Open Source *       Initiative (http://www.opensource.org) must display the *       following acknowledgement in all advertising material: *        This product includes software developed at the Courant *        Institute of Mathematical Sciences (http://cims.nyu.edu). *     * The names of the authors may not be used to endorse or promote products *       derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ThE AUTHORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***************************************************************************/#ifndef TRAINER_H_#define TRAINER_H_#include "Net.h"#include "DataSource.h"namespace ebl {// TODO: templatize classes for generic LabeledDataSource//! Various learning algorithm classes are defined//! to train learning machines. Learning machines are//! generally subclasses of <gb-module>. Learning algorithm//! classes include gradient descent for supervised//! learning, and others.//! Abstract class for energy-based learning algorithms.//! The class contains an input, a (trainable) parameter,//! and an energy. this is an abstract class from which actual//! trainers can be derived.class eb_trainer {public:	idx3_supervised_module 	*machine;	parameter 							*param;	state_idx								*input;	state_idx								*energy;	intg 										age;	bool										input_owned;	bool										energy_owned;	eb_trainer(idx3_supervised_module *m, parameter *p,			state_idx *e = NULL, state_idx *in = NULL);	virtual ~eb_trainer();};//////////////////////////////////////////////////////////////////! A an abstract trainer class for supervised training with of a//! feed-forward classifier with discrete class labels. Actual//! supervised trainers can be derived from this. The machine's fprop//! method must have four arguments: input, output, energy, and//! desired output. A call to the machine's fprop must look like this://! {<code>//!    (==> machine fprop input output desired energy)//! </code>}//! By default, <output> must be a <class-state>, <desired> an//! idx0 of int (integer scalar), and <energy> and <idx0-ddstate>//! (or subclasses thereof).//! The meter passed to the training and testing methods//! should be a <classifier-meter>, or any meter whose//! update method looks like this://! {<code>//!    (==> meter update output desired energy)//! </code>}//! where <output> must be a <class-state>, <desired> an//! idx0 of int, and <energy> and <idx0-ddstate>.class supervised : public eb_trainer {public:	class_state *output;	Idx<ubyte> 	*desired;	bool				output_owned;	bool				desired_owned;	//! create a new <supervised> trainer. Arguments are as follow:	//! {<ul>	//!  {<li> <m>: machine to be trained.}	//!  {<li> <p>: trainable parameter object of the machine.}	//!  {<li> <e>: energy object (by default an idx0-ddstate).}	//!  {<li> <in>: input object (by default an idx3-ddstate).}	//!  {<li> <out>: output object (by default a class-state).}	//!  {<li> <des>: desired output (by default an idx0 of int).}	//! }	supervised(idx3_supervised_module *m, parameter *p,			state_idx *e = NULL, state_idx *in = NULL,			class_state *out = NULL, Idx<ubyte> *des = NULL);	virtual ~supervised();	//! train the machine with on the data source <dsource> and	//! measure the performance with <mtr>.	//! This is a dummy method that should be defined	//! by subclasses.template<class T, class L>	void train(LabeledDataSource<T, L> *ds, classifier_meter *mtr);	//! measures the performance over all the samples of data source <dsource>.	//!<mtr> must be an appropriate meter.template<class T, class L>	void test(LabeledDataSource<T, L> *ds, classifier_meter *mtr);	//! measures the performance over a single sample of data source <dsource>.	//! This leaves the internal state of the meter unchanged, and	//! can be used for a quick test of a whether a particular pattern	//! is correctly recognized or not.template<class T, class L>	void test_sample(LabeledDataSource<T, L> *ds, classifier_meter *mtr, intg i);};//////////////////////////////////////////////////////////////////! A basic trainer object for supervised stochastic gradient//! training of a classifier with discrete class labels.//! This is a subclass of <supervised>. The machine's//! fprop method must have four arguments: input, output, energy,//! and desired output. A call to the machine's fprop must//! look like this://! {<code>//!    (==> machine fprop input output desired energy)//! </code>}//! where <output> must be a <class-state>, <desired> an//! idx0 of int (integer scalar), and <energy> and <idx0-ddstate>.//! The meter passed to the training and testing methods//! should be a <classifier-meter>, or any meter whose//! update method looks like this://! {<code>//!    (==> meter update output desired energy)//! </code>}//! where <output> must be a <class-state>, <desired> an//! idx0 of int, and <energy> and <idx0-ddstate>.//! The trainable parameter object must understand the following//! methods://! {<ul>//!  {<li> {<c> (==> param clear-dx)}: clear the gradients.}//!  {<li> {<c> (==> param update eta inertia)}: update the parameters with//!   learning rate <eta>, and momentum term <inertia>.}//! }//! If the diagonal hessian estimation is to be used, the param//! object must also understand://! {<ul>//!  {<li> {<c> (==> param clear-ddx)}: clear the second derivatives.}//!  {<li> {<c> (==> param update-ddeltas knew kold)}: update average second//!    derivatives.}//!  {<li> {<c> (==> param compute-epsilons <mu>)}: set the per-parameter//!          learning rates to the inverse of the sum of the second//!          derivative estimates and <mu>.}//! }class supervised_gradient : public supervised {public:	//! create a new <supervised-gradient> trainer. Arguments are as follow:	//! {<ul>	//!  {<li> <m>: machine to be trained.}	//!  {<li> <p>: trainable parameter object of the machine.}	//!  {<li> <e>: energy object (by default an idx0-ddstate).}	//!  {<li> <in>: input object (by default an idx3-ddstate).}	//!  {<li> <out>: output object (by default a class-state).}	//!  {<li> <des>: desired output (by default an idx0 of int).}	//! }	supervised_gradient(idx3_supervised_module *m, parameter *p,			state_idx *e = NULL, state_idx *in = NULL,			class_state *out = NULL, Idx<ubyte> *des = NULL);	virtual ~supervised_gradient();	//! train with stochastic (online) gradient on the next <n>	//! samples of data source <dsource> with global learning rate <eta>.	//! and "momentum term" <inertia>.	//! Optionally maintain a running average of the weights with positive rate <kappa>.	//! A negative value for kappa sets a rate equal to -<kappa>/<age>.	//! No such update is performed if <kappa> is 0.	//!	//! Record performance in <mtr>.	//! <mtr> must understand the following methods:	//! {<code>	//!   (==> mtr update age output desired energy)	//!   (==> mtr info)	//! </code>}	//! where <age> is the number of calls to parameter updates so far,	//! <output> is the machine's output (most likely a <class-state>),	//! <desired> is the desired output (most likely an idx0 of int),	//! and <energy> is an <idx0-state>.	//! The <info> should return a list of relevant measurements.	template<class T, class L>	void train_online(LabeledDataSource<T, L> *ds, classifier_meter *mtr,			intg n, gd_param *gdp, double kappa);	//! train the machine on all the samples in data source	//! <dsource> and measure the performance with <mtr>.	template<class T, class L>  void train(LabeledDataSource<T, L> *ds, classifier_meter *mtr,			gd_param *gdp, double kappa = 0.0);	//! Compute per-parameter learning rates (epsilons) using the	//! stochastic diaginal levenberg marquardt method (as described in	//! LeCun et al.  "efficient backprop", available at	//! {<hlink> http://yann.lecun.com}).  This method computes positive	//! estimates the second derivative of the objective function with respect	//! to each parameter using the Gauss-Newton approximation.  <dsource> is	//! a data source, <n> is the number of patterns (starting at the current	//! point in the data source) on which the	//! estimate is to be performed. Each parameter-specific	//! learning rate epsilon_i is computed as 1/(H_ii + mu), where H_ii	//! are the diagonal Gauss-Newton estimates and <mu> is the blowup	//! prevention fudge factor.	template<class T, class L>	void compute_diaghessian(LabeledDataSource<T, L> *ds, intg n, double mu);	//! Compute the parameters saliencies as defined in the	//! Optimal Brain Damage algorithm of (LeCun, Denker, Solla,	//! NIPS 1989), available at http://yann.lecun.com.	//! This computes the first and second derivatives of the energy	//! with respect to each parameter averaged over the next <n>	//! patterns of data source <ds>.	//! A vector of saliencies is returned. Component <i> of the	//! vector contains {<c> Si = -Gi * Wi + 1/2 Hii * Wi^2 }, this	//! is an estimate of how much the energy would increase if the	//! parameter was eliminated (set to zero).	//! Parameters with small saliencies can be eliminated by	//! setting their value and epsilon to zero.	template<class T, class L>   void saliencies(LabeledDataSource<T, L> *ds, intg n);	//! NOT FINISHED. compute optimal learning rate for on-line gradient	// TODO	/*(defmethod supervised-gradient find-eta (ds n alpha gamma)  (let ((w (idx-copy :param:x))	(psi (idx-copy :param:dx))	(phi (idx-sqrt :param:epsilons))	(gradp (idx-copy :param:dx)))    (repeat n      (idx-add w psi :param:x)      (==> ds fprop input desired)      (==> machine fprop input output desired energy)      (==> param clear-dx)      (==> machine bprop input output desired energy)      (idx-copy :param:dx gp)      (idx-copy w :param:x)      (==> ds fprop input desired)      (==> machine fprop input output desired energy)      (==> param clear-dx)      (==> machine bprop input output desired energy)      //! some stuff goes here      (==> ds next))) ())	 */};} // end namespace ebl#include "Trainer.hpp"#endif /*TRAINER_H_*/

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产欧美精品日韩区二区麻豆天美| 26uuu另类欧美亚洲曰本| 日韩欧美第一区| 99九九99九九九视频精品| 精品处破学生在线二十三| 日韩av高清在线观看| 日韩亚洲欧美成人一区| 日本视频中文字幕一区二区三区 | 亚洲精选视频在线| 欧美一三区三区四区免费在线看| 亚洲情趣在线观看| 91色在线porny| 国产拍欧美日韩视频二区| 日韩精品一区二区三区四区视频| 欧美va天堂va视频va在线| 欧美一区二区播放| 亚洲一区精品在线| 精品国产欧美一区二区| 亚洲精品一区二区三区四区高清| 国产欧美视频一区二区三区| 国产精品美女一区二区三区 | 亚洲免费观看高清| 亚洲国产一区二区a毛片| 国产偷国产偷精品高清尤物| 国产精品日日摸夜夜摸av| 国产精品美女久久久久久久| 国产精品热久久久久夜色精品三区| 亚洲天堂久久久久久久| 国产精品自产自拍| 国产精品久久久一本精品| 成人国产精品免费| 亚洲日本在线天堂| 亚欧色一区w666天堂| 亚洲精品国产a| 欧美精品一区二区精品网| av日韩在线网站| 国产精品国产三级国产普通话蜜臀 | 99久久免费国产| 欧美日韩国产色站一区二区三区| 亚洲一区视频在线| 亚洲色欲色欲www| 日韩精品一二区| 久久免费午夜影院| 337p粉嫩大胆噜噜噜噜噜91av| 欧美三级三级三级| 精品中文字幕一区二区小辣椒| 亚洲成人av免费| 国产伦精品一区二区三区视频青涩| 九一九一国产精品| 91福利国产成人精品照片| 欧美亚洲高清一区二区三区不卡| 日韩二区在线观看| 午夜伦欧美伦电影理论片| 亚洲自拍偷拍av| 国产成人免费av在线| 99热99精品| 国产99久久久久| 97久久超碰精品国产| 成人自拍视频在线观看| 91在线一区二区三区| 成人免费视频一区| 国产剧情一区二区三区| 91精品欧美一区二区三区综合在| 日韩欧美高清一区| 亚洲成人在线观看视频| 日韩av中文字幕一区二区三区| 日本中文字幕不卡| 精品视频在线免费观看| 亚洲综合色区另类av| 色综合咪咪久久| 精品国产一区二区三区不卡 | 日韩不卡一区二区三区| 色琪琪一区二区三区亚洲区| 国产精品国产三级国产aⅴ入口 | 一区精品在线播放| 日韩影院免费视频| 亚洲丶国产丶欧美一区二区三区| 色婷婷综合久色| 91久久一区二区| 亚洲午夜羞羞片| 欧美亚洲综合另类| 欧美mv日韩mv| 国产精品夜夜嗨| 一本大道久久a久久精品综合| 一区二区三区四区中文字幕| 蜜桃视频一区二区三区| 色综合久久久久久久久久久| 最新不卡av在线| 色呦呦一区二区三区| 亚洲高清视频中文字幕| 日韩色视频在线观看| 亚洲国产精品成人综合色在线婷婷 | 日韩网站在线看片你懂的| 蜜桃视频在线一区| 国产欧美日韩在线| 色呦呦日韩精品| 日韩欧美一区电影| 国产成人午夜精品5599| 99久久精品99国产精品| 亚洲电影一级黄| 久久久夜色精品亚洲| 亚洲精品第1页| 国产白丝精品91爽爽久久| 亚洲日本青草视频在线怡红院 | 久久影院视频免费| 成人福利电影精品一区二区在线观看| 91麻豆精品国产91久久久| 国产精品一二三区在线| 91麻豆精品国产91久久久久久久久 | 国产麻豆日韩欧美久久| 1000部国产精品成人观看| 欧美二区乱c少妇| 亚洲一区中文日韩| 久久综合色婷婷| 欧美丝袜自拍制服另类| 精品一区二区三区免费播放| 欧美日韩国产电影| 丰满白嫩尤物一区二区| 爽好久久久欧美精品| 国产精品人人做人人爽人人添| 91精品国产综合久久精品麻豆 | 中文字幕亚洲不卡| 91精品国产色综合久久不卡蜜臀| 99精品视频在线观看免费| 中文字幕精品一区二区精品绿巨人 | 久久国产精品99精品国产 | 久久久久久电影| 欧美日韩一卡二卡| 亚洲精品ww久久久久久p站| 日韩精品在线一区二区| 色综合天天做天天爱| 色94色欧美sute亚洲线路一久| 日韩av电影天堂| 一区二区三区中文免费| 色就色 综合激情| 亚洲精品国产a| 欧美日韩国产高清一区| 美女尤物国产一区| 亚洲电影一级片| 亚洲男女一区二区三区| 国产精品久久毛片a| 国产清纯白嫩初高生在线观看91 | 色婷婷综合五月| 成人av在线一区二区| 国产在线视频一区二区| 欧美在线观看视频一区二区| 日韩电影在线观看一区| 在线电影一区二区三区| 国产精品一区二区视频| 亚洲乱码中文字幕| 欧美剧情电影在线观看完整版免费励志电影 | 欧美一区二区视频在线观看| 欧美伊人精品成人久久综合97| 91视频一区二区| 色猫猫国产区一区二在线视频| 91视视频在线观看入口直接观看www | 欧美日韩在线免费视频| 欧美日韩一区二区在线观看| 欧美伊人久久久久久久久影院 | 日韩精品一级中文字幕精品视频免费观看 | 香港成人在线视频| 亚洲高清视频在线| 日韩一区二区三区视频| 精品免费国产二区三区| 精品国偷自产国产一区| 91女厕偷拍女厕偷拍高清| 99re这里只有精品首页| 在线亚洲精品福利网址导航| 欧美日韩视频第一区| 日韩一区二区在线看| 精品免费国产一区二区三区四区| 国产亚洲一区字幕| 综合色天天鬼久久鬼色| 亚洲国产视频a| 久草精品在线观看| 亚洲国产精品一区二区www| 久久精品欧美日韩精品| 综合久久一区二区三区| 亚洲国产乱码最新视频| 国产区在线观看成人精品| 777午夜精品视频在线播放| 国产真实乱子伦精品视频| 日本午夜精品视频在线观看| 亚洲天堂久久久久久久| 婷婷激情综合网| 国产98色在线|日韩| 久久97超碰色| 亚洲视频一二三区| 日本一区二区在线不卡| 一区二区三区欧美视频| 欧美国产视频在线| 五月天欧美精品| 国产精品99久久久久久久vr | 欧美成人精精品一区二区频| 中文字幕av免费专区久久| 26uuu色噜噜精品一区二区| 一区二区三区中文字幕精品精品| 国产精品色在线观看| 日韩激情中文字幕| 日日摸夜夜添夜夜添精品视频 |