亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? datapage.c

?? --- --- --- Code Warrior 4.6 Target : MC9S12DG128B Crystal: 16.000Mhz busclock: 8.000MHz pllcl
?? C
?? 第 1 頁(yè) / 共 5 頁(yè)
字號(hào):
        BRA     done

L_NOPAGE:
        MOVW    0,SP, 0,Y         ;// store the value passed in X (high word)
        STD           2,Y         ;// store the value passed in D (low word)
done:
        PULX                      ;// restore X register
        MOVW    0,SP, 1,+SP       ;// move return address
        RTS
  }
#else /* USE_SEVERAL_PAGES */
  __asm {
        PSHD                      ;// save D register
        LDAA    PAGE_ADDR         ;// save page register
        LDAB    4,SP              ;// load page part of address
        STAB    PAGE_ADDR         ;// set page register
        STX     0,Y               ;// store the value passed in X
        MOVW    0,SP, 2,Y         ;// store the value passed in D (low word)
        STAA    PAGE_ADDR         ;// restore page register
        PULD                      ;// restore D register
        MOVW    0,SP, 1,+SP       ;// move return address
        RTS
  }
#endif /* USE_SEVERAL_PAGES */
}

/*--------------------------- _FAR_COPY_RC --------------------------------
  This runtime routine is used to access paged memory via a runtime function.
  It may also be used if the compiler  option -Cp is not used with the runtime argument.

  Arguments :
  - offset part of the source int the X register
  - page part of the source in the A register
  - offset part of the dest int the Y register
  - page part of the dest in the B register
  - number of bytes to be copied is defined by the next 2 bytes after the return address.

  Result :
  - memory area copied
  - no registers are saved, i.e. all registers may be destroyed
  - all page register still contain the same value as before the call
  - the function returns after the constant defining the number of bytes to be copied


  stack-structure at the loop-label:
     0,SP : destination offset
     2,SP : source page
     3,SP : destination page
     4,SP : source offset
     6,SP : points to length to be copied. This function returns after the size

  A usual call to this function looks like:

  struct Huge src, dest;
    ; ...
    LDX  #src
    LDAA #PAGE(src)
    LDY  #dest
    LDAB #PAGE(dest)
    JSR  _FAR_COPY_RC
    DC.W sizeof(struct Huge)
    ; ...

  --------------------------- _FAR_COPY_RC ----------------------------------*/

#ifdef __cplusplus
extern "C"
#endif
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME

void NEAR _FAR_COPY_RC(void) {
#if USE_SEVERAL_PAGES
  __asm {
        DEX                       ;// source addr-=1, because loop counter ends at 1
        PSHX                      ;// save source offset
        PSHD                      ;// save both pages
        DEY                       ;// destination addr-=1, because loop counter ends at 1
        PSHY                      ;// save destination offset
        LDY     6,SP              ;// Load Return address
        LDX     2,Y+              ;// Load Size to copy
        STY     6,SP              ;// Store adjusted return address
loop:
        LDD     4,SP              ;// load source offset
        LEAY    D,X               ;// calculate actual source address
        LDAB    2,SP              ;// load source page
        __PIC_JSR(_LOAD_FAR_8)    ;// load 1 source byte
        PSHB                      ;// save value
        LDD     0+1,SP            ;// load destination offset
        LEAY    D,X               ;// calculate actual destination address
        PULA                      ;// restore value
        LDAB    3,SP              ;// load destination page
        __PIC_JSR(_STORE_FAR_8)   ;// store one byte
        DEX
        BNE     loop
        LEAS    6,SP              ;// release stack
        _SRET                     ;// debug info only: This is the last instr of a function with a special return
        RTS                       ;// return
  }
#else
  __asm {
        PSHD                      ;// store page registers
        TFR     X,D
        PSHY                      ;// temporary space
        LDY     4,SP              ;// load return address
        ADDD    2,Y+              ;// calculate source end address. Increment return address
        STY     4,SP
        PULY
        PSHD                      ;// store src end address
        LDAB    2,SP              ;// reload source page
        LDAA    PAGE_ADDR         ;// save page register
        PSHA
loop:
        STAB    PAGE_ADDR         ;// set source page
        LDAA    1,X+              ;// load value
        MOVB    4,SP, PAGE_ADDR   ;// set destination page
        STAA    1,Y+
        CPX     1,SP
        BNE     loop

        LDAA    5,SP+             ;// restore old page value and release stack
        STAA    PAGE_ADDR         ;// store it into page register
        _SRET                     ;// debug info only: This is the last instr of a function with a special return
        RTS
  }
#endif
}

/*--------------------------- _FAR_COPY --------------------------------

  The _FAR_COPY runtime routine was used to copied large memory blocks in previous compiler releases.
  However this release now does use _FAR_COPY_RC instead. The only difference is how the size of 
  the area to be copied is passed into the function. For _FAR_COPY the size is passed on the stack just
  above the return address. _FAR_COPY_RC does expect the return address just after the JSR _FAR_COPY_RC call
  in the code of the caller. This allows for denser code calling _FAR_COPY_RC but does also need a slightly
  larger runtime routine and it is slightly slower.
  The _FAR_COPY routine is here now mainly for compatibility with previous releases. 
  The current compiler does not use it. 
  
--------------------------- _FAR_COPY ----------------------------------*/

#ifdef __cplusplus
extern "C"
#endif
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME

void NEAR _FAR_COPY(void) {
#if USE_SEVERAL_PAGES
  __asm {
        DEX                       ;// source addr-=1, because loop counter ends at 1
        PSHX                      ;// save source offset
        PSHD                      ;// save both pages
        DEY                       ;// destination addr-=1, because loop counter ends at 1
        PSHY                      ;// save destination offset
        LDX     8,SP              ;// load counter, assuming counter > 0

loop:
        LDD     4,SP              ;// load source offset
        LEAY    D,X               ;// calculate actual source address
        LDAB    2,SP              ;// load source page
        __PIC_JSR(_LOAD_FAR_8)    ;// load 1 source byte
        PSHB                      ;// save value
        LDD     0+1,SP            ;// load destination offset
        LEAY    D,X               ;// calculate actual destination address
        PULA                      ;// restore value
        LDAB    3,SP              ;// load destination page
        __PIC_JSR(_STORE_FAR_8)   ;// store one byte
        DEX
        BNE     loop
        LDX     6,SP              ;// load return address
        LEAS    10,SP             ;// release stack
        JMP     0,X               ;// return
  }
#else
  __asm {
        PSHD                      ;// store page registers
        TFR     X,D
        ADDD    4,SP              ;// calculate source end address
        STD     4,SP
        PULB                      ;// reload source page
        LDAA    PAGE_ADDR         ;// save page register
        PSHA
loop:
        STAB    PAGE_ADDR         ;// set source page
        LDAA    1,X+              ;// load value
        MOVB    1,SP, PAGE_ADDR   ;// set destination page
        STAA    1,Y+
        CPX     4,SP
        BNE     loop

        LDAA    2,SP+             ;// restore old page value and release stack
        STAA    PAGE_ADDR         ;// store it into page register
        LDX     4,SP+             ;// release stack and load return address
        JMP     0,X               ;// return
  }
#endif
}

#else  /* __HCS12X__  */

/*
  The HCS12X knows two different kind of addresses:
    - Logical addresses. E.g.
       MOVB #page(var),RPAGE
       INC var

    - Global addresses E.g.
       MOVB #page(var),GPAGE
       GLDAA var
       INCA
       GSTAA var

  Global addresses are used with G-Load's and G-Store's, logical addresses are used for all the other instructions
  and occasions. As HC12's or HCS12's do not have the G-Load and G-Store instructions,
  global addresses are not used with these processor families.
  They are only used with HCS12X chips (and maybe future ones deriving from a HCS12X).

  Logical and Global addresses can point to the same object, however the global and logical address of an object
  are different for most objects (actually for all except the registers from 0 to 0x7FF).
  Therefore the compiler needs to transform in between them.

  HCS12X Pointer types:

    The following are logical addresses:
    - all 16 bit pointers
       - "char* __near": always.
       - "char *" in the small and banked memory model
    - 24 bit dpage, epage, ppage or rpage pointers (*1) (note: the first HCS12X compilers may not support these pointer types)
       - "char *__dpage": Note this type only exists for
                          orthogonality with the HC12 A4 chip which has a DPAGE reg.
                          It does not apply to the HCS12X.
       - "char *__epage": 24 bit pointer using the EPAGE register
       - "char *__ppage": 24 bit pointer using the PPAGE register.
                          As the PPAGE is also used for BANKED code,
                          using this pointer type is only legal from non banked code.
       - "char *__rpage": 24 bit pointer using the RPAGE register


    The following are global addresses:
       "char*": in the large memory model (only HCS12X)
       "char* __far": always for HCS12X.

   (*1): For the HC12 and HCS12 "char* __far" and "char*" in the large memory model are also logical.

   Some notes for the HC12/HCS12 programmers.

   The address of a far object for a HC12 and for a HCS12X is different, even if they are at the same place in the memory map.
   For the HC12, a far address is using the logical addresses, for the HCS12X however, far addresses are using global addresses.
   This does cause troubles for the unaware!
   
   The conversion routines implemented in this file support the special HCS12XE RAM mapping (when RAMHM is set).
   To enable this mapping compile this file with the "-MapRAM" compiler option.

  HCS12X Logical Memory map

    Logical Addresses           Used for                shadowed at           page register     Global Address

    0x000000 .. 0x0007FF        Peripheral Registers                          Not Paged         0x000000
    0x??0800 .. 0x??0BFF        Paged EEPROM                                  EPAGE (@0x17)     0x100000+EPAGE*0x0400
    0x000C00 .. 0x000FFF        Non Paged EEPROM        0xFF0800..0xFF0FFF    Not Paged         0x13FC00
    0x??1000 .. 0x??1FFF        Paged RAM                                     RPAGE (@0x16)     0x000000+RPAGE*0x1000
    0x002000 .. 0x003FFF        Non Paged RAM           0xFE1000..0xFF1FFF    Not Paged         0x0FE000
    0x004000 .. 0x007FFF        Non Paged FLASH         0xFC8000..0xFCBFFF    Not Paged         0x7F4000
    0x??8000 .. 0x00BFFF        Paged FLASH                                   PPAGE (@0x30)     0x400000+PPAGE*0x4000
    0x00C000 .. 0x00FFFF        Non Paged FLASH         0xFF8000..0xFFBFFF    Not Paged         0x7FC000

    NA: Not Applicable

  HCS12X Global Memory map

    Global Addresses            Used for                Logical mapped at

    0x000000 .. 0x0007FF        Peripheral Registers    0x000000 .. 0x0007FF
    0x000800 .. 0x000FFF        DMA registers           Not mapped
    0x001000 .. 0x0FFFFF        RAM                     0x??1000 .. 0x??1FFF
    0x0FE000 .. 0x0FFFFF        RAM, Log non paged      0x002000 .. 0x003FFF
    0x100000 .. 0x13FFFF        EEPROM                  0x??0800 .. 0x??0BFF
    0x13FC00 .. 0x13FFFF        EEPROM  non paged       0x000C00 .. 0x000FFF
    0x140000 .. 0x3FFFFF        External Space          Not mapped
    0x400000 .. 0x7FFFFF        FLASH                   0x??8000 .. 0x??BFFF
    0x7F4000 .. 0x7F7FFF        FLASH, Log non paged    0x004000 .. 0x007FFF
    0x7FC000 .. 0x7FFFFF        FLASH, Log non paged    0x00C000 .. 0x00FFFF

  HCS12X Logical Memory map (RAM mapped) 

    Logical Addresses           Used for                shadowed at           page register     Global Address

    0x000000 .. 0x0007FF        Peripheral Registers                          Not Paged         0x000000
    0x??0800 .. 0x??0BFF        Paged EEPROM                                  EPAGE (@0x17)     0x100000+EPAGE*0x0400
    0x000C00 .. 0x000FFF        Non Paged EEPROM        0xFF0800..0xFF0FFF    Not Paged         0x13FC00
    0x??1000 .. 0x??1FFF        Paged RAM                                     RPAGE (@0x16)     0x000000+RPAGE*0x1000
    0x002000 .. 0x003FFF        Non Paged RAM           0xFE1000..0xFF1FFF    Not Paged         0x0FE000
    0x004000 .. 0x007FFF        Non Paged RAM           0xFA1000..0xFD1FFF    Not Paged         0FC000
    0x??8000 .. 0x00BFFF        Paged FLASH                                   PPAGE (@0x30)     0x400000+PPAGE*0x4000
    0x00C000 .. 0x00FFFF        Non Paged FLASH         0xFF8000..0xFFBFFF    Not Paged         0x7FC000

    NA: Not Applicable

  HCS12X Global Memory map

    Global Addresses            Used for                Logical mapped at

    0x000000 .. 0x0007FF        Peripheral Registers    0x000000 .. 0x0007FF
    0x000800 .. 0x000FFF        DMA registers           Not mapped
    0x001000 .. 0x0FFFFF        RAM                     0x??1000 .. 0x??1FFF
    0x0FA000 .. 0x0FFFFF        RAM, Log non paged      0x002000 .. 0x007FFF
    0x100000 .. 0x13FFFF        EEPROM                  0x??0800 .. 0x??0BFF
    0x13FC00 .. 0x13FFFF        EEPROM  non paged       0x000C00 .. 0x000FFF
    0x140000 .. 0x3FFFFF        External Space          Not mapped
    0x400000 .. 0x7FFFFF        FLASH                   0x??8000 .. 0x??BFFF
    0x7F4000 .. 0x7F7FFF        FLASH, Log non paged    Not mapped
    0x7FC000 .. 0x7FFFFF        FLASH, Log non paged    0x00C000 .. 0x00FFFF


  How to read this table:
    For logical addresses, the lower 16 bits of the address do determine in which area the address is,
    if this address is paged, then this entry also controls and which of the EPAGE, PPAGE or RPAGE
    page register is controlling the bits 16 to 23 of the address.
    For global addresses, the bits 16 to 23 have to be in the GPAGE register and the lower 16 bits
    have to be used with the special G load or store instructions (e.g. GLDAA).
    As example the logical address 0x123456 is invalid. Because its lower bits 0x3456 are in a
    non paged area, so the page 0x12 does not exist.
    The address 0xFE1020 however does exist. Do access it, the RPAGE has to contain 0xFE and the
    offset 0x1020 has to be used.

      ORG $7000
        MOVB #0xFE, 0x16 ; RPAGE
        LDAA 0x1020      ; reads at the logical address 0xFE1020

    Because the last two RAM pages are also accessible directly from 0x2000 to 0x3FFF, the
    following shorter code does read the same memory location:

      ORG $7000
        LDAA 0x2020      ; reads at the logical address 0x2020
                         ;   which maps to the same memory as 0xFE1020

    This memory location now also has a global address. For logical 0xFE1020 the global address is 0x0FE020.
    So the following code does once more access the same memory location:

      ORG $7000
        MOVB #0x0F, 0x10 ; GPAGE
        LDAA 0xE020      ; reads at the global address 0x0FE020
                         ;   which maps to the same memory as the logical addr. 0xFE1020

    Therefore every memory location for the HCS12X has up to 3 different addresses.
    Up to two logical and one global.
    Notes.
      - Not every address has a logical equivalent. The external space is only available in the global address space.
        The DMA Registers are also only addressable with global addresses.

      - The PPAGE can only be set if the code is outside of the 0x8000 to 0xBFFF range.
        If not, the next code fetch will be from the new wrong PPAGE value.

      - Inside of the paged area, the highest pages are allocated first. So all HCS12X's do have the FF pages
        (if they have this memory type at all).

      - For RPAGE, the value 0 is illegal. Otherwise the global addresses would overlap with the registers.
        This has the implication that the logical address 0x001000 is strictly seen not valid.


*/

#if __OPTION_ACTIVE__("-MapRAM")
#define __HCS12XE_RAMHM_SET__
#endif

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品奇米国产一区二区三区| 91在线观看视频| 亚洲成人免费在线| 亚洲永久精品国产| 亚洲成人综合网站| 首页欧美精品中文字幕| 午夜精品久久久久久| 亚洲一二三四区不卡| 亚洲综合自拍偷拍| 日本在线播放一区二区三区| 日产国产高清一区二区三区| 日本午夜一区二区| 国产伦精品一区二区三区免费迷| 国产真实乱子伦精品视频| 国产一区二区三区香蕉 | 一区二区三区中文免费| 亚洲精品国产a久久久久久 | 在线观看av不卡| 欧美视频中文一区二区三区在线观看| 91国产免费观看| 欧美日韩高清在线播放| 精品电影一区二区三区 | 亚洲精品乱码久久久久| 香蕉av福利精品导航| 免费不卡在线视频| 国产成人精品三级麻豆| 精品视频在线免费看| 欧美电影免费观看高清完整版 | 亚洲午夜久久久久中文字幕久| 水野朝阳av一区二区三区| 国产精品中文欧美| 欧美伊人久久久久久午夜久久久久| 欧美疯狂性受xxxxx喷水图片| 精品国产在天天线2019| 亚洲国产精品高清| 婷婷国产在线综合| 成人爽a毛片一区二区免费| 91九色最新地址| 精品国产污污免费网站入口| 亚洲精品五月天| 国产一区视频导航| 欧美无砖专区一中文字| 国产婷婷一区二区| 久久99精品久久久久久| 91视频www| 国产片一区二区| 免费看欧美女人艹b| 在线观看区一区二| 国产精品免费久久久久| 久久99国产精品久久| 日本高清不卡aⅴ免费网站| www国产精品av| 日韩精品久久理论片| 91视频你懂的| 国产精品区一区二区三区| 精品一区二区综合| 日韩一区二区免费高清| 亚洲国产日日夜夜| 日本久久电影网| 中文字幕中文字幕一区二区| 久久99精品久久只有精品| 69堂亚洲精品首页| 婷婷综合在线观看| 欧美亚洲动漫精品| 亚洲一区二区三区精品在线| 99热精品国产| 中文字幕亚洲成人| 成人网在线播放| 国产精品三级av在线播放| 国产91色综合久久免费分享| 精品国精品国产| 国内精品国产成人| 久久久美女毛片 | 国产午夜亚洲精品理论片色戒| 美女视频免费一区| 日韩免费视频一区二区| 久久99久国产精品黄毛片色诱| 欧美一区二区三区色| 日韩不卡一二三区| 精品国产乱子伦一区| 国产一区二区三区国产| 久久久久久久久伊人| 成人少妇影院yyyy| 综合婷婷亚洲小说| 欧美性猛片xxxx免费看久爱| 日韩影院免费视频| 精品少妇一区二区| 国产成人小视频| 亚洲蜜臀av乱码久久精品| 欧美午夜宅男影院| 麻豆精品在线看| 国产欧美精品一区aⅴ影院| 99天天综合性| 亚洲综合色在线| 日韩西西人体444www| 狠狠色丁香婷综合久久| ...av二区三区久久精品| 91久久一区二区| 日韩激情视频在线观看| 国产日韩精品久久久| 在线国产亚洲欧美| 久久精品二区亚洲w码| 国产精品福利一区| 日韩欧美一区二区视频| av电影天堂一区二区在线| 午夜视频一区在线观看| 久久久综合精品| 日本久久精品电影| 国产一区二区日韩精品| 亚洲精品免费在线| 精品国产乱码久久久久久图片| 成人h版在线观看| 日韩成人一级片| 亚洲色图欧洲色图婷婷| 欧美成va人片在线观看| 99re这里只有精品视频首页| 美女视频网站久久| 亚洲激情图片一区| 亚洲国产精品精华液2区45| 欧美日韩国产首页在线观看| 国产成a人亚洲精品| 粉嫩av亚洲一区二区图片| 午夜成人在线视频| 国产精品大尺度| 久久人人爽人人爽| 日韩一区二区三区av| 色视频欧美一区二区三区| 国产高清久久久| 美女任你摸久久| 亚洲韩国精品一区| 亚洲欧美日韩在线不卡| 国产欧美日韩在线视频| 精品日韩欧美在线| 4438亚洲最大| 91老师片黄在线观看| 成熟亚洲日本毛茸茸凸凹| 精品一区二区在线观看| 日韩在线一二三区| 亚洲午夜三级在线| 亚洲一级二级三级在线免费观看| 中文字幕日本不卡| 中文字幕的久久| 国产精品你懂的在线欣赏| 久久综合久久综合久久综合| 欧美一区二区视频在线观看| 91.com视频| 69成人精品免费视频| 7777精品伊人久久久大香线蕉经典版下载| www.欧美日韩| 色婷婷狠狠综合| 欧美主播一区二区三区| 欧美色爱综合网| 欧美色手机在线观看| 在线电影一区二区三区| 欧美日韩国产bt| 91麻豆精品国产自产在线| 91精品国产综合久久国产大片| 欧美电影一区二区| 精品免费国产二区三区| 久久色在线观看| 国产精品高潮呻吟| 亚洲自拍偷拍av| 日韩1区2区3区| 国产精品亚洲一区二区三区妖精| 国产成人自拍网| 色香蕉久久蜜桃| 555www色欧美视频| 精品成人在线观看| 中文字幕日本不卡| 亚洲午夜激情网页| 精品一区二区av| 成人一级片在线观看| 色婷婷精品久久二区二区蜜臂av| 欧美亚洲综合另类| 欧美精品一区二区三区久久久| 久久视频一区二区| 亚洲乱码国产乱码精品精的特点| 亚洲黄色在线视频| 久久国产精品99久久人人澡| 成人免费毛片app| 欧美三级韩国三级日本三斤| 精品国产99国产精品| 亚洲欧美日韩久久| 狠狠色狠狠色综合系列| 91丨porny丨最新| 精品国产亚洲在线| 一区二区三区日韩欧美| 久久国内精品视频| 在线免费亚洲电影| 欧美激情一区三区| 视频在线在亚洲| 成人高清免费观看| 欧美一区二视频| 亚洲精品亚洲人成人网在线播放| 久久精品国产澳门| 欧美色精品天天在线观看视频| 久久无码av三级| 奇米色777欧美一区二区| 91浏览器在线视频| 日本一区二区视频在线观看|