亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? datapage.c

?? Code Warrior 4.6 Target : MC9S12DG128B Crystal: 16.000Mhz busclock: 8.000MHz pllclock:16.000MHz
?? C
?? 第 1 頁 / 共 5 頁
字號:
        BRA     done

L_NOPAGE:
        MOVW    0,SP, 0,Y         ;// store the value passed in X (high word)
        STD           2,Y         ;// store the value passed in D (low word)
done:
        PULX                      ;// restore X register
        MOVW    0,SP, 1,+SP       ;// move return address
        RTS
  }
#else /* USE_SEVERAL_PAGES */
  __asm {
        PSHD                      ;// save D register
        LDAA    PAGE_ADDR         ;// save page register
        LDAB    4,SP              ;// load page part of address
        STAB    PAGE_ADDR         ;// set page register
        STX     0,Y               ;// store the value passed in X
        MOVW    0,SP, 2,Y         ;// store the value passed in D (low word)
        STAA    PAGE_ADDR         ;// restore page register
        PULD                      ;// restore D register
        MOVW    0,SP, 1,+SP       ;// move return address
        RTS
  }
#endif /* USE_SEVERAL_PAGES */
}

/*--------------------------- _FAR_COPY_RC --------------------------------
  This runtime routine is used to access paged memory via a runtime function.
  It may also be used if the compiler  option -Cp is not used with the runtime argument.

  Arguments :
  - offset part of the source int the X register
  - page part of the source in the A register
  - offset part of the dest int the Y register
  - page part of the dest in the B register
  - number of bytes to be copied is defined by the next 2 bytes after the return address.

  Result :
  - memory area copied
  - no registers are saved, i.e. all registers may be destroyed
  - all page register still contain the same value as before the call
  - the function returns after the constant defining the number of bytes to be copied


  stack-structure at the loop-label:
     0,SP : destination offset
     2,SP : source page
     3,SP : destination page
     4,SP : source offset
     6,SP : points to length to be copied. This function returns after the size

  A usual call to this function looks like:

  struct Huge src, dest;
    ; ...
    LDX  #src
    LDAA #PAGE(src)
    LDY  #dest
    LDAB #PAGE(dest)
    JSR  _FAR_COPY_RC
    DC.W sizeof(struct Huge)
    ; ...

  --------------------------- _FAR_COPY_RC ----------------------------------*/

#ifdef __cplusplus
extern "C"
#endif
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME

void NEAR _FAR_COPY_RC(void) {
#if USE_SEVERAL_PAGES
  __asm {
        DEX                       ;// source addr-=1, because loop counter ends at 1
        PSHX                      ;// save source offset
        PSHD                      ;// save both pages
        DEY                       ;// destination addr-=1, because loop counter ends at 1
        PSHY                      ;// save destination offset
        LDY     6,SP              ;// Load Return address
        LDX     2,Y+              ;// Load Size to copy
        STY     6,SP              ;// Store adjusted return address
loop:
        LDD     4,SP              ;// load source offset
        LEAY    D,X               ;// calculate actual source address
        LDAB    2,SP              ;// load source page
        __PIC_JSR(_LOAD_FAR_8)    ;// load 1 source byte
        PSHB                      ;// save value
        LDD     0+1,SP            ;// load destination offset
        LEAY    D,X               ;// calculate actual destination address
        PULA                      ;// restore value
        LDAB    3,SP              ;// load destination page
        __PIC_JSR(_STORE_FAR_8)   ;// store one byte
        DEX
        BNE     loop
        LEAS    6,SP              ;// release stack
        _SRET                     ;// debug info only: This is the last instr of a function with a special return
        RTS                       ;// return
  }
#else
  __asm {
        PSHD                      ;// store page registers
        TFR     X,D
        PSHY                      ;// temporary space
        LDY     4,SP              ;// load return address
        ADDD    2,Y+              ;// calculate source end address. Increment return address
        STY     4,SP
        PULY
        PSHD                      ;// store src end address
        LDAB    2,SP              ;// reload source page
        LDAA    PAGE_ADDR         ;// save page register
        PSHA
loop:
        STAB    PAGE_ADDR         ;// set source page
        LDAA    1,X+              ;// load value
        MOVB    4,SP, PAGE_ADDR   ;// set destination page
        STAA    1,Y+
        CPX     1,SP
        BNE     loop

        LDAA    5,SP+             ;// restore old page value and release stack
        STAA    PAGE_ADDR         ;// store it into page register
        _SRET                     ;// debug info only: This is the last instr of a function with a special return
        RTS
  }
#endif
}

/*--------------------------- _FAR_COPY --------------------------------

  The _FAR_COPY runtime routine was used to copied large memory blocks in previous compiler releases.
  However this release now does use _FAR_COPY_RC instead. The only difference is how the size of 
  the area to be copied is passed into the function. For _FAR_COPY the size is passed on the stack just
  above the return address. _FAR_COPY_RC does expect the return address just after the JSR _FAR_COPY_RC call
  in the code of the caller. This allows for denser code calling _FAR_COPY_RC but does also need a slightly
  larger runtime routine and it is slightly slower.
  The _FAR_COPY routine is here now mainly for compatibility with previous releases. 
  The current compiler does not use it. 
  
--------------------------- _FAR_COPY ----------------------------------*/

#ifdef __cplusplus
extern "C"
#endif
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME

void NEAR _FAR_COPY(void) {
#if USE_SEVERAL_PAGES
  __asm {
        DEX                       ;// source addr-=1, because loop counter ends at 1
        PSHX                      ;// save source offset
        PSHD                      ;// save both pages
        DEY                       ;// destination addr-=1, because loop counter ends at 1
        PSHY                      ;// save destination offset
        LDX     8,SP              ;// load counter, assuming counter > 0

loop:
        LDD     4,SP              ;// load source offset
        LEAY    D,X               ;// calculate actual source address
        LDAB    2,SP              ;// load source page
        __PIC_JSR(_LOAD_FAR_8)    ;// load 1 source byte
        PSHB                      ;// save value
        LDD     0+1,SP            ;// load destination offset
        LEAY    D,X               ;// calculate actual destination address
        PULA                      ;// restore value
        LDAB    3,SP              ;// load destination page
        __PIC_JSR(_STORE_FAR_8)   ;// store one byte
        DEX
        BNE     loop
        LDX     6,SP              ;// load return address
        LEAS    10,SP             ;// release stack
        JMP     0,X               ;// return
  }
#else
  __asm {
        PSHD                      ;// store page registers
        TFR     X,D
        ADDD    4,SP              ;// calculate source end address
        STD     4,SP
        PULB                      ;// reload source page
        LDAA    PAGE_ADDR         ;// save page register
        PSHA
loop:
        STAB    PAGE_ADDR         ;// set source page
        LDAA    1,X+              ;// load value
        MOVB    1,SP, PAGE_ADDR   ;// set destination page
        STAA    1,Y+
        CPX     4,SP
        BNE     loop

        LDAA    2,SP+             ;// restore old page value and release stack
        STAA    PAGE_ADDR         ;// store it into page register
        LDX     4,SP+             ;// release stack and load return address
        JMP     0,X               ;// return
  }
#endif
}

#else  /* __HCS12X__  */

/*
  The HCS12X knows two different kind of addresses:
    - Logical addresses. E.g.
       MOVB #page(var),RPAGE
       INC var

    - Global addresses E.g.
       MOVB #page(var),GPAGE
       GLDAA var
       INCA
       GSTAA var

  Global addresses are used with G-Load's and G-Store's, logical addresses are used for all the other instructions
  and occasions. As HC12's or HCS12's do not have the G-Load and G-Store instructions,
  global addresses are not used with these processor families.
  They are only used with HCS12X chips (and maybe future ones deriving from a HCS12X).

  Logical and Global addresses can point to the same object, however the global and logical address of an object
  are different for most objects (actually for all except the registers from 0 to 0x7FF).
  Therefore the compiler needs to transform in between them.

  HCS12X Pointer types:

    The following are logical addresses:
    - all 16 bit pointers
       - "char* __near": always.
       - "char *" in the small and banked memory model
    - 24 bit dpage, epage, ppage or rpage pointers (*1) (note: the first HCS12X compilers may not support these pointer types)
       - "char *__dpage": Note this type only exists for
                          orthogonality with the HC12 A4 chip which has a DPAGE reg.
                          It does not apply to the HCS12X.
       - "char *__epage": 24 bit pointer using the EPAGE register
       - "char *__ppage": 24 bit pointer using the PPAGE register.
                          As the PPAGE is also used for BANKED code,
                          using this pointer type is only legal from non banked code.
       - "char *__rpage": 24 bit pointer using the RPAGE register


    The following are global addresses:
       "char*": in the large memory model (only HCS12X)
       "char* __far": always for HCS12X.

   (*1): For the HC12 and HCS12 "char* __far" and "char*" in the large memory model are also logical.

   Some notes for the HC12/HCS12 programmers.

   The address of a far object for a HC12 and for a HCS12X is different, even if they are at the same place in the memory map.
   For the HC12, a far address is using the logical addresses, for the HCS12X however, far addresses are using global addresses.
   This does cause troubles for the unaware!
   
   The conversion routines implemented in this file support the special HCS12XE RAM mapping (when RAMHM is set).
   To enable this mapping compile this file with the "-MapRAM" compiler option.

  HCS12X Logical Memory map

    Logical Addresses           Used for                shadowed at           page register     Global Address

    0x000000 .. 0x0007FF        Peripheral Registers                          Not Paged         0x000000
    0x??0800 .. 0x??0BFF        Paged EEPROM                                  EPAGE (@0x17)     0x100000+EPAGE*0x0400
    0x000C00 .. 0x000FFF        Non Paged EEPROM        0xFF0800..0xFF0FFF    Not Paged         0x13FC00
    0x??1000 .. 0x??1FFF        Paged RAM                                     RPAGE (@0x16)     0x000000+RPAGE*0x1000
    0x002000 .. 0x003FFF        Non Paged RAM           0xFE1000..0xFF1FFF    Not Paged         0x0FE000
    0x004000 .. 0x007FFF        Non Paged FLASH         0xFC8000..0xFCBFFF    Not Paged         0x7F4000
    0x??8000 .. 0x00BFFF        Paged FLASH                                   PPAGE (@0x30)     0x400000+PPAGE*0x4000
    0x00C000 .. 0x00FFFF        Non Paged FLASH         0xFF8000..0xFFBFFF    Not Paged         0x7FC000

    NA: Not Applicable

  HCS12X Global Memory map

    Global Addresses            Used for                Logical mapped at

    0x000000 .. 0x0007FF        Peripheral Registers    0x000000 .. 0x0007FF
    0x000800 .. 0x000FFF        DMA registers           Not mapped
    0x001000 .. 0x0FFFFF        RAM                     0x??1000 .. 0x??1FFF
    0x0FE000 .. 0x0FFFFF        RAM, Log non paged      0x002000 .. 0x003FFF
    0x100000 .. 0x13FFFF        EEPROM                  0x??0800 .. 0x??0BFF
    0x13FC00 .. 0x13FFFF        EEPROM  non paged       0x000C00 .. 0x000FFF
    0x140000 .. 0x3FFFFF        External Space          Not mapped
    0x400000 .. 0x7FFFFF        FLASH                   0x??8000 .. 0x??BFFF
    0x7F4000 .. 0x7F7FFF        FLASH, Log non paged    0x004000 .. 0x007FFF
    0x7FC000 .. 0x7FFFFF        FLASH, Log non paged    0x00C000 .. 0x00FFFF

  HCS12X Logical Memory map (RAM mapped) 

    Logical Addresses           Used for                shadowed at           page register     Global Address

    0x000000 .. 0x0007FF        Peripheral Registers                          Not Paged         0x000000
    0x??0800 .. 0x??0BFF        Paged EEPROM                                  EPAGE (@0x17)     0x100000+EPAGE*0x0400
    0x000C00 .. 0x000FFF        Non Paged EEPROM        0xFF0800..0xFF0FFF    Not Paged         0x13FC00
    0x??1000 .. 0x??1FFF        Paged RAM                                     RPAGE (@0x16)     0x000000+RPAGE*0x1000
    0x002000 .. 0x003FFF        Non Paged RAM           0xFE1000..0xFF1FFF    Not Paged         0x0FE000
    0x004000 .. 0x007FFF        Non Paged RAM           0xFA1000..0xFD1FFF    Not Paged         0FC000
    0x??8000 .. 0x00BFFF        Paged FLASH                                   PPAGE (@0x30)     0x400000+PPAGE*0x4000
    0x00C000 .. 0x00FFFF        Non Paged FLASH         0xFF8000..0xFFBFFF    Not Paged         0x7FC000

    NA: Not Applicable

  HCS12X Global Memory map

    Global Addresses            Used for                Logical mapped at

    0x000000 .. 0x0007FF        Peripheral Registers    0x000000 .. 0x0007FF
    0x000800 .. 0x000FFF        DMA registers           Not mapped
    0x001000 .. 0x0FFFFF        RAM                     0x??1000 .. 0x??1FFF
    0x0FA000 .. 0x0FFFFF        RAM, Log non paged      0x002000 .. 0x007FFF
    0x100000 .. 0x13FFFF        EEPROM                  0x??0800 .. 0x??0BFF
    0x13FC00 .. 0x13FFFF        EEPROM  non paged       0x000C00 .. 0x000FFF
    0x140000 .. 0x3FFFFF        External Space          Not mapped
    0x400000 .. 0x7FFFFF        FLASH                   0x??8000 .. 0x??BFFF
    0x7F4000 .. 0x7F7FFF        FLASH, Log non paged    Not mapped
    0x7FC000 .. 0x7FFFFF        FLASH, Log non paged    0x00C000 .. 0x00FFFF


  How to read this table:
    For logical addresses, the lower 16 bits of the address do determine in which area the address is,
    if this address is paged, then this entry also controls and which of the EPAGE, PPAGE or RPAGE
    page register is controlling the bits 16 to 23 of the address.
    For global addresses, the bits 16 to 23 have to be in the GPAGE register and the lower 16 bits
    have to be used with the special G load or store instructions (e.g. GLDAA).
    As example the logical address 0x123456 is invalid. Because its lower bits 0x3456 are in a
    non paged area, so the page 0x12 does not exist.
    The address 0xFE1020 however does exist. Do access it, the RPAGE has to contain 0xFE and the
    offset 0x1020 has to be used.

      ORG $7000
        MOVB #0xFE, 0x16 ; RPAGE
        LDAA 0x1020      ; reads at the logical address 0xFE1020

    Because the last two RAM pages are also accessible directly from 0x2000 to 0x3FFF, the
    following shorter code does read the same memory location:

      ORG $7000
        LDAA 0x2020      ; reads at the logical address 0x2020
                         ;   which maps to the same memory as 0xFE1020

    This memory location now also has a global address. For logical 0xFE1020 the global address is 0x0FE020.
    So the following code does once more access the same memory location:

      ORG $7000
        MOVB #0x0F, 0x10 ; GPAGE
        LDAA 0xE020      ; reads at the global address 0x0FE020
                         ;   which maps to the same memory as the logical addr. 0xFE1020

    Therefore every memory location for the HCS12X has up to 3 different addresses.
    Up to two logical and one global.
    Notes.
      - Not every address has a logical equivalent. The external space is only available in the global address space.
        The DMA Registers are also only addressable with global addresses.

      - The PPAGE can only be set if the code is outside of the 0x8000 to 0xBFFF range.
        If not, the next code fetch will be from the new wrong PPAGE value.

      - Inside of the paged area, the highest pages are allocated first. So all HCS12X's do have the FF pages
        (if they have this memory type at all).

      - For RPAGE, the value 0 is illegal. Otherwise the global addresses would overlap with the registers.
        This has the implication that the logical address 0x001000 is strictly seen not valid.


*/

#if __OPTION_ACTIVE__("-MapRAM")
#define __HCS12XE_RAMHM_SET__
#endif

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
美女网站一区二区| 蜜桃av一区二区三区| 精品日韩在线一区| 一本色道a无线码一区v| 精品一区二区三区视频| 亚洲欧美另类在线| 久久在线观看免费| 欧美日韩电影在线| 99国产精品久久久久久久久久| 秋霞av亚洲一区二区三| 亚洲欧美视频一区| 亚洲国产精品成人久久综合一区| 日韩一区二区三区三四区视频在线观看| 岛国精品在线播放| 国产精品亚洲第一区在线暖暖韩国| 午夜激情一区二区三区| 亚洲男人的天堂在线aⅴ视频 | 欧美在线观看禁18| 国产精品911| 精品一区二区在线免费观看| 亚洲国产三级在线| 一区二区三区影院| 一区视频在线播放| 国产视频一区二区在线| wwwwww.欧美系列| 欧美一区二区在线看| 欧美视频中文一区二区三区在线观看| 不卡的电影网站| 成人h动漫精品一区二区| 国产精品一二三区在线| 黑人精品欧美一区二区蜜桃| 另类中文字幕网| 琪琪久久久久日韩精品| 免费国产亚洲视频| 天天免费综合色| 天天综合色天天综合色h| 亚洲一区精品在线| 亚洲一二三区在线观看| 亚洲成人高清在线| 午夜影院久久久| 石原莉奈一区二区三区在线观看 | 一区二区高清免费观看影视大全| 中文字幕不卡的av| 国产精品电影一区二区三区| 欧美高清在线一区二区| 中文字幕在线一区| 亚洲日本青草视频在线怡红院| **欧美大码日韩| 中文字幕一区二区三| 国产精品国产成人国产三级 | 久久日一线二线三线suv| 欧美成人伊人久久综合网| 欧美sm美女调教| 久久久久一区二区三区四区| 久久久久久久综合色一本| 国产精品视频yy9299一区| 国产精品女主播在线观看| 亚洲黄色小视频| 亚洲成人久久影院| 伦理电影国产精品| 国产99久久精品| 日本久久精品电影| 91精品在线观看入口| 精品国产免费一区二区三区香蕉| 久久中文娱乐网| 自拍偷拍国产亚洲| 亚洲h动漫在线| 美女看a上一区| 丁香六月久久综合狠狠色| 99久久99久久久精品齐齐| 91福利社在线观看| 欧美成人性战久久| 中文字幕一区二区三区蜜月| 亚洲人一二三区| 日本成人在线网站| 大陆成人av片| 欧美日韩国产首页在线观看| 337p粉嫩大胆色噜噜噜噜亚洲| 国产精品三级av在线播放| 亚洲亚洲精品在线观看| 国产一区二区调教| 日本韩国精品在线| 精品久久久久久最新网址| **性色生活片久久毛片| 奇米精品一区二区三区在线观看 | 日韩激情中文字幕| 国产.欧美.日韩| 欧美精品v国产精品v日韩精品| 国产亚洲短视频| 偷拍自拍另类欧美| 丁香桃色午夜亚洲一区二区三区| 欧美午夜精品久久久久久超碰| 精品国产91乱码一区二区三区| 亚洲少妇30p| 国内精品伊人久久久久av一坑| 91网页版在线| 久久综合九色欧美综合狠狠| 亚洲国产日日夜夜| 成人avav在线| 精品国产制服丝袜高跟| 一区二区三区四区不卡视频| 国产精品综合av一区二区国产馆| 精品视频一区 二区 三区| 中文字幕不卡的av| 久久91精品久久久久久秒播| 欧美在线色视频| 国产精品国产自产拍在线| 久久精品免费观看| 欧美日韩亚洲综合| 国产精品福利一区| 国产精品888| www国产精品av| 日本三级亚洲精品| 欧美在线综合视频| 亚洲欧洲综合另类在线| 国产suv一区二区三区88区| 精品日本一线二线三线不卡| 午夜精品视频在线观看| 在线观看国产日韩| 一色桃子久久精品亚洲| 成人爽a毛片一区二区免费| 精品久久久久久综合日本欧美| 日韩精品亚洲一区| 欧美性受xxxx| 亚洲最快最全在线视频| 91免费看视频| 亚洲欧美自拍偷拍色图| 成人精品亚洲人成在线| 欧美国产乱子伦| 国产成人免费视频| 国产女人18水真多18精品一级做| 久久er99热精品一区二区| 日韩一区二区免费在线观看| 日韩av一区二区在线影视| 欧美精品久久一区| 天天av天天翘天天综合网| 欧美羞羞免费网站| 亚洲高清免费观看| 欧美久久一区二区| 青青草原综合久久大伊人精品| 欧美女孩性生活视频| 青青草视频一区| 欧美精品一区二区三区四区| 国产真实乱偷精品视频免| 久久精品视频一区| 成人精品视频.| 亚洲卡通欧美制服中文| 在线观看91精品国产入口| 亚洲电影一区二区三区| 欧美日韩一区成人| 天堂在线亚洲视频| 欧美大片一区二区| 国产盗摄女厕一区二区三区| 中文字幕在线一区| 在线观看日韩毛片| 日本三级亚洲精品| 国产亚洲婷婷免费| 99亚偷拍自图区亚洲| 亚洲一区二区三区国产| 欧美一二区视频| 国产精品一二三在| 亚洲欧美日韩久久| 69久久夜色精品国产69蝌蚪网| 精品无码三级在线观看视频 | 国产精品成人一区二区艾草| 色欧美88888久久久久久影院| 亚洲www啪成人一区二区麻豆| 日韩美女一区二区三区四区| 夫妻av一区二区| 亚洲高清视频的网址| 久久免费精品国产久精品久久久久| 国产电影精品久久禁18| 一区二区三区在线免费| 日韩免费在线观看| 成人av资源网站| 亚洲aaa精品| 国产无遮挡一区二区三区毛片日本| 色综合色综合色综合色综合色综合 | 欧美精品粉嫩高潮一区二区| 国产美女精品一区二区三区| 亚洲欧美偷拍三级| 欧美成人女星排名| 91久久精品网| 国产精品一区二区久久精品爱涩| 一区二区三国产精华液| 精品国产乱码久久久久久久| 91浏览器打开| 免费高清在线一区| 亚洲美女偷拍久久| 26uuu欧美| 欧美视频一区在线观看| 国产电影一区在线| 日韩中文字幕不卡| 亚洲美女区一区| 久久久久久久一区| 91精品国产色综合久久不卡电影| 成人午夜在线播放| 美国十次综合导航| 亚洲成在线观看| 亚洲欧美区自拍先锋|