亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? Fei Sha 等人編寫的流形學習算法CCA的matlab代碼
??
字號:
README( Aug 18, 2006)--------------------------------------------------------------------I.   IntroductionII.  InstallationIII. Usage & ExamplesIV.  Contacts & CopyrightsV.   References--------------------------------------------------------------------I. IntroductionFunction [Z, CCAEIGEN, CCADETAILS] = CCA(X, Y, EDGES, OPTS) computes a lowdimensional embedding Z in R^d that maximally preserves angles among  input data X that lives in R^D, with the algorithm Conformal Component Analysis (CCA).The key idea is to constrain Z = L*Y where Y is a partial basis that spans the space of R^d. Such Y can be computed from graph Laplacian (such as the outputs of Laplacian eigenmap [3] and Locally Linear Embedding, ie, LLE [4]). The parameterization matrix L is optimized to maximallypreserve angles between edges coded in the sparse matrix EDGES.Ref.[1-2] shows that the optimization problem can be formulated as a semidefinite programming problem (SDP) in P = L'*L.  SDPs are convex optimization problems; they can be solved efficiently.Recently, the linear parameterization idea (Z=L*Y) has also been used in findingmaximum variance unfolding (MVU, a.k.a, Semidefinite Embedding) [5] and hasbeen applied to sensor localization problems [6]. MVU aims to compute (local) distance mapping between high dimensional data points and low dimensional representation, while CCA computes angle preserving mappings.     This distribution also implements a variant of MVU, which is described in [6].--------------------------------------------------------------------II. InstallationThe distribution of this package includes following files1. README: this file2. cca.m:  main Matlab function3. mexCCACollectData.c:  a C source file 4. demoCCA.m:  demo function    To install, make sure cca.m (optionally, demoCCA.m) is in your Matlab path.Also, in Matlab's command window, issue command "mex mexCCACollectData.c" to the C source file compile and make sure the compiled object is in your Matlabpath.A SDP solver is needed. This implementation uses CSDP solver [7]. Make sure themain Matlab function csdp.m is in your Matlab path.This distribution has been tested on MAC OS X 10.3.x or above, with Matlab 7.0 or above, as well as Intel-based Linux (kernel 2.4 or above) with Matlab 7.0 orabove. The CSDP solver that has been tested is version 4.9 and 5.0.--------------------------------------------------------------------III. Usage & Examples.1. To run examples, type demoCCANote: You need an implementaiton of LLE to run demoCCA().This distribution provides one based on Sam Roweis's implementation at http://www.cs.toronto.edu/~roweis/lle/ .2. To call the function cca(), use following syntax:<=== Inputs:X: input data stored in matrix  (D x N) where D is the dimensionalityY: partial basis stored in matrix (d x N)   Note that if graph Laplacians/LLE are used to compute Y, then make sure Y(1,:)   is not a constant vector.EDGES: a sparse matrix of (N x N). In each column i, the row indices j to  nonzero entrices define data points that are in the nearest neighbors of  data point i.OPTS:   OPTS.method        == 'CCA':   implements CCA algorithm [1,2]          == 'MVU':   implements MVU [6]                default is 'CCA'   OPTS.regularizer: the tradeoff factor when maximizing trace (as in MVU [5])    while preserving distances (it is okay to use a nonzero regularizer in CCA    algorithm, where we will get an "unfolded" CCA to enforce low rank in    solutions)        default is 0.           OPTS.relative: In MVU, either absolute distance can be preserved     (OPTS.relative ==0) or relative distance can be preserved (OPTS.relative == 1)        default is 0        ====> Outputs:Z: low dimensional embedding (d X N)CCAEIGN: eigenspectra of the matrix P = L'*L. If P is low-rank (say d' < d),  then Z can be cutoff at d' dimension as dimensionality reduced further.CCADetails:   CCADetails.cost: final objective function value   CCADetails.c: if OPTS.method == 'CCA', this is the local scaling    coefficient for each data point   CCADetails.P: matrix P = L'*L    CCADetails.opts: options used to run the algorithm, same as OPTS with    checked parameters   CCADetails.sdpflag: SDP solver exit flag. (check CSDP solver manual. In   general, an exit flag of 0 means normal exit.)--------------------------------------------------------------------IV. Misc.1. Please send bug report to feisha@cs.berkeley.edu2. Feel free to use it for educational and research purpose.--------------------------------------------------------------------V. References   [1]    Fei Sha and Lawrence K. Saul (2005).   Analysis and Extension of Spectral Methods for Nonlinear Dimensionality Reduction.  Proceedings of 22nd  International Conference on Machine Learning (ICML 2005), Bonn, Germany[2] Fei Sha, Kilian Weinberge and Lawrence K. Saul (200x). Manifold learning by  semidefinite programming. Manuscript in preparation.[3].  M. Belkin and P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and  Data Representation, Neural Comp., 15(6):1373-1396, 2003.    [4]. L. K. Saul and S. T. Roweis (2003). Think globally, fit locally: unsupervised  learning of low dimensional manifolds. Journal of Machine Learning Research 4:119-155[5].  K. Q. Weinberger and L. K. Saul (2006). Unsupervised learning of image  manifolds by semidefinite programming. International Journal of Computer  Vision 70(1): 77-90 [6]. K. Q. Weinberger, Fei Sha, Qihui Zhu and L. K. Saul (2006). Localization in  Large Scale Sensor Networks via Semidefinite Programming and Graph  Regularization. Submitted manuscript. [7]. Borchers, B., CSDP, A C Library for Semidefinite Programming. Optimization  Methods and Software 11(1):613-623, 1999.  http://infohost.nmt.edu/~borchers/csdp.html --------------------------------------------------------------------

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲成人免费看| 丁香桃色午夜亚洲一区二区三区| 免费成人你懂的| 99国产精品一区| 久久色在线视频| 美美哒免费高清在线观看视频一区二区| 国产成人超碰人人澡人人澡| 日韩一区二区在线观看视频 | 欧美美女喷水视频| 国产精品网站在线| 免费成人在线网站| 欧美在线制服丝袜| 亚洲桃色在线一区| 成人动漫一区二区在线| 久久久亚洲欧洲日产国码αv| 亚洲高清免费在线| 欧美视频一区在线| 亚洲人成网站在线| 91麻豆产精品久久久久久| 欧美激情在线免费观看| 精品一区中文字幕| 日韩免费看的电影| 国产呦萝稀缺另类资源| 9191国产精品| 日韩国产高清影视| 欧美高清你懂得| 亚洲第一成年网| 欧美午夜精品理论片a级按摩| 成人欧美一区二区三区视频网页 | 欧美日韩一区二区三区免费看 | 日本久久一区二区三区| 中文字幕在线观看一区二区| 成人视屏免费看| 日本一区二区成人| 风间由美中文字幕在线看视频国产欧美| 日韩欧美国产三级| 精品在线亚洲视频| 精品国产免费久久| 国产精品小仙女| 中文字幕亚洲一区二区av在线| 成人一区二区三区在线观看| 中文字幕制服丝袜一区二区三区| 不卡一区二区三区四区| 亚洲人成亚洲人成在线观看图片| 在线欧美日韩精品| 日本不卡的三区四区五区| 精品久久一二三区| 国产成人av电影在线观看| 免费国产亚洲视频| 欧美国产视频在线| 色系网站成人免费| 日韩一区精品视频| 国产视频一区二区在线| 国产69精品久久99不卡| 亚洲日本一区二区三区| 欧美日韩一区国产| 韩国精品主播一区二区在线观看| 久久美女高清视频| av激情亚洲男人天堂| 午夜精品福利视频网站| 欧美精品一区二区三区一线天视频| 国产精品主播直播| 亚洲午夜久久久久| 精品粉嫩aⅴ一区二区三区四区| 丰满亚洲少妇av| 亚洲成av人片在线观看无码| 精品久久久影院| 99久久国产综合精品麻豆| 亚洲国产精品一区二区www在线| 欧美大尺度电影在线| 波多野结衣中文字幕一区二区三区 | 91啪亚洲精品| 麻豆国产欧美日韩综合精品二区| 偷窥国产亚洲免费视频| 日韩欧美一区二区在线视频| 成人精品国产福利| 美女免费视频一区二区| 亚洲男人天堂av| 久久久国产精品麻豆| 欧美电影一区二区| 91蜜桃免费观看视频| 精品制服美女久久| 亚洲成av人片在线观看| 日韩毛片在线免费观看| 精品国产成人系列| 欧美日韩精品一区二区三区| 成人综合婷婷国产精品久久蜜臀| 性做久久久久久久免费看| 国产精品白丝在线| 久久精品视频免费| 日韩手机在线导航| 欧美色老头old∨ideo| 成人国产电影网| 老司机午夜精品| 婷婷久久综合九色综合绿巨人| 国产精品国产三级国产三级人妇| 久久综合色8888| 日韩欧美一级二级三级| 欧美日韩国产成人在线91| 97精品国产露脸对白| 岛国精品在线播放| 国产伦精一区二区三区| 久久精品国内一区二区三区| 五月天激情综合网| 日产国产欧美视频一区精品| 亚洲日本在线视频观看| 亚洲天堂中文字幕| 亚洲欧洲国产日本综合| 中文字幕乱码久久午夜不卡| 精品欧美一区二区在线观看| 欧美一区二区三区在线观看| 欧美久久久久中文字幕| 欧美妇女性影城| 国产精品素人一区二区| 欧美国产精品v| 日本一区二区三区电影| 国产亚洲精品超碰| 国产欧美一区二区在线| 国产欧美一区在线| 国产精品短视频| 亚洲视频一区二区在线| 中文字幕在线免费不卡| 亚洲人成网站在线| 亚洲成人三级小说| 日本不卡高清视频| 国产在线观看一区二区| 国产成人精品免费| 99re在线精品| 欧美日韩aaaaaa| 日韩三级视频在线看| 精品捆绑美女sm三区| 国产日本欧美一区二区| 亚洲欧美日本韩国| 视频一区国产视频| 国产在线国偷精品产拍免费yy | 亚洲国产岛国毛片在线| 中文字幕一区二区三区在线不卡| 亚洲精选在线视频| 日韩av一二三| 丰满亚洲少妇av| 欧美日韩dvd在线观看| 久久在线观看免费| 1024成人网| 美女在线一区二区| 波多野结衣精品在线| 欧美日韩国产综合一区二区| 日韩免费视频线观看| 亚洲欧洲日本在线| 日韩精品久久理论片| 成人午夜视频在线观看| 欧美日韩亚洲综合一区| 久久婷婷久久一区二区三区| 一区二区三区在线观看视频| 麻豆一区二区99久久久久| 99re热这里只有精品免费视频| 欧美福利视频导航| 国产精品乱码一区二区三区软件| 亚洲高清免费观看高清完整版在线观看| 蜜臂av日日欢夜夜爽一区| fc2成人免费人成在线观看播放| 欧美在线小视频| 欧美国产一区在线| 麻豆成人久久精品二区三区红 | 手机精品视频在线观看| 国产成人福利片| 欧美一区二区免费视频| 亚洲欧美日韩成人高清在线一区| 日韩av不卡一区二区| 成人中文字幕在线| 日韩欧美专区在线| 亚洲成人久久影院| 成人激情黄色小说| 精品国产一区二区三区久久影院 | 不卡视频在线看| 2023国产精华国产精品| 亚洲成人第一页| 欧美伊人久久大香线蕉综合69 | 久久伊99综合婷婷久久伊| 亚洲午夜激情av| 99re视频精品| 中文字幕视频一区| 国产精品88av| 精品久久久久99| 青青草国产精品97视觉盛宴| 在线国产电影不卡| 亚洲精选在线视频| 91啪在线观看| 亚洲女性喷水在线观看一区| 成人av在线网站| 国产欧美精品国产国产专区| 精品一区二区三区欧美| 欧美一区日本一区韩国一区| 一区二区三区四区蜜桃| 色综合久久久久| 亚洲欧洲精品一区二区三区| 粉嫩aⅴ一区二区三区四区五区 | 欧美zozozo| 久久99国产精品尤物| 欧美成va人片在线观看| 日本少妇一区二区|