亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? lsmtopology.cpp

?? amygdata的神經網絡算法源代碼
?? CPP
?? 第 1 頁 / 共 2 頁
字號:
        for (int y = 0; y < Y; y++){            for (int z = 0; z < Z; z++){                pProps->SetPosition(x, y, z);                Neuron * n = nf->MakeNeuron(Network::GetNetworkRef()->GetNewNeuronId(), nProps, this);                OutputManager::AddNeuronToGroup(n, HIDDENGROUP);                if(float(rand())/RAND_MAX <= 0.2 ){                    n->Inhibitory(true);                    LOGGER(4, "Inhibitory neuron at " << x << ", " << y << ", " << z);                } else {                    n->Inhibitory(false);                    LOGGER(4, "Excitatory neuron at " << x << ", " << y << ", " << z);                }            }        }    }}void LSMTopology::MakeCube(NFactory* nf, NeuronProperties* np, unsigned int lx, unsigned int ly, unsigned int lz){    X=lx; Y=ly; Z=lz;    LOGGER(1, "Making Cube of size " << X << ", " << Y << ", " << Z);        //NeuronProperties * nProps = nf->MakeNeuronProperties(true);    PhysicalProperties * pProps = np->GetPhysicalProps();        for (int x = 0; x < X; x++){        for (int y = 0; y < Y; y++){            for (int z = 0; z < Z; z++){                pProps->SetPosition(x, y, z);                Neuron * n = nf->MakeNeuron(Network::GetNetworkRef()->GetNewNeuronId(), np, this);                OutputManager::AddNeuronToGroup(n, HIDDENGROUP);                if(float(rand())/RAND_MAX <= 0.2 ){                    n->Inhibitory(true);                    LOGGER(4, "Inhibitory neuron at " << x << ", " << y << ", " << z);                } else {                    n->Inhibitory(false);                    LOGGER(4, "Excitatory neuron at " << x << ", " << y << ", " << z);                }            }        }    }}void LSMTopology::Connect(const float lambda,                           const EI & A,                           const EI & delay,                          const EI & C,                          const EI & U,                          const EI & D,                          const EI & F,                          const  string & sType,						  const float likelyhood){    LOGGER(1, "Connecting the liquid with synapse type " << sType);    int cType;    ConnectorRegistry & cr = ConnectorRegistry::GetRegistry();    NConnector * connector = cr.GetConnector(sType);    if(!connector) throw runtime_error("No connector for synapse type " + sType);    for (iterator itPre=begin(); itPre != end(); itPre++){       for (iterator itPost=begin(); itPost != end(); itPost++){           Neuron * pre = *itPre;           SpikingNeuron * post = dynamic_cast <SpikingNeuron*> (*itPost);           if(!post) continue; // Postneuron is an InputNeuron           if(pre == post) continue;  // no self - connection                      if(!pre->Inhibitory() && !post->Inhibitory()) cType = 0;           else if(!pre->Inhibitory() && post->Inhibitory()) cType = 1;           else if(pre->Inhibitory() && !post->Inhibitory()) cType = 2;           else  cType = 3;                      PhysicalProperties * pPre = pre->Properties()->GetPhysicalProps();           PhysicalProperties * pPost = post->Properties()->GetPhysicalProps();           float dd = (pPre->GetX() - pPost->GetX()) * (pPre->GetX() - pPost->GetX()) +                      (pPre->GetY() - pPost->GetY()) * (pPre->GetY() - pPost->GetY()) +                      (pPre->GetZ() - pPost->GetZ()) * (pPre->GetZ() - pPost->GetZ());           float cChance = C.EIV[cType] * exp(-dd/(lambda*lambda));           if(float(rand())/RAND_MAX < cChance ){  // connect               LOGGER(4, "Connecting " << pre->GetId() << " --> " << post-> GetId());               DynamicSynapseProperties * sProps = dynamic_cast < DynamicSynapseProperties * >                                                                  (connector->GetDefaultProperties());               if(!sProps){                   cerr << __FILE__ << ":" << __LINE__ << ": Cannot convert SynapseProperties" << endl;                   continue;               }               sProps->SetDelay(AmTimeInt(delay.EIV[cType]));            // TODO: The weight is gamma distributed               float tmp=-1;               /*while (tmp<0) {                   tmp = Utilities::GaussRand(A.EIV[cType], A.EIV[cType]);               }*/               sProps->SetDynaParam('A', A.EIV[cType]);            // TODO: The following values are Gauss distributed               /*tmp=-1;               while (tmp<0) {                   tmp = Utilities::GaussRand(U.EIV[cType], U.EIV[cType]/2);               }*/               sProps->SetDynaParam('U', U.EIV[cType]);               /*tmp=-1;               while (tmp<0) {                   tmp = Utilities::GaussRand(D.EIV[cType], D.EIV[cType]/2);               }*/               sProps->SetDynaParam('D', D.EIV[cType]);               /*tmp=-1;               while (tmp<0) {                   tmp = Utilities::GaussRand(F.EIV[cType], F.EIV[cType]/2);               }*/               sProps->SetDynaParam('F', F.EIV[cType]);               connector->Connect(pre, post, *sProps);           }       }    }        if(output.size()){        for (unsigned int i=0; i<output.size(); ++i) {            NConnector * connectorOut = ConnectorRegistry::GetRegistry().GetConnector("StaticSynapse");            if(!connectorOut) throw runtime_error("No connector for synapse type StaticSynapse" );            for (iterator itPre=begin(); itPre != end(); itPre++){                for (iterator itPost=output[i]->begin(); itPost != output[i]->end(); itPost++){                    SpikingNeuron * pre = dynamic_cast <SpikingNeuron*> (*itPre);                    if(!pre) throw runtime_error(string("Neuron: ") +  Utilities::itostr(pre->GetId()) +                                                        ": Not a SpikingNeuron");                     SpikingNeuron * post = dynamic_cast <SpikingNeuron*> (*itPost);                    if(!post) throw runtime_error(string("Neuron: ") +  Utilities::itostr(post->GetId()) +                                                        ": Not a SpikingNeuron");                     StaticSynapseProperties * sProps = dynamic_cast < StaticSynapseProperties * >                                                                     (connectorOut->GetDefaultProperties());                    float w = ((float)(rand())/RAND_MAX)*0.2;                    if (rand()%2) {                        w = w * -1.;    // make half the connections inhibitory                    }                    sProps->SetWeight(w);                    connectorOut->Connect(pre, post, *sProps);                                }            }        }    } else {        LOGGER(1, "No output defined");    }    if(input.size()){        for (unsigned int i=0; i<input.size(); ++i) {            NConnector * connectorIn = ConnectorRegistry::GetRegistry().GetConnector("StaticSynapse");            if(!connectorIn) throw runtime_error("No connector for synapse type StaticSynapse" );            for (iterator itPre=input[i]->begin(); itPre != input[i]->end(); itPre++){                for (iterator itPost = begin(); itPost != end(); itPost++){                    if(float(rand())/RAND_MAX > likelyhood) continue;  // draw random neurons from the liquid                    SpikingNeuron * post = dynamic_cast <SpikingNeuron*> (*itPost);                    if(!post) throw runtime_error(string("Neuron: ") +  Utilities::itostr(post->GetId()) + ": Not a SpikingNeuron");                    Neuron * pre = dynamic_cast <Neuron*> (*itPre);                    StaticSynapseProperties * sProps = dynamic_cast < StaticSynapseProperties * >                                                                     (connectorIn->GetDefaultProperties());                    if (post->Inhibitory()) {                        sProps->SetWeight(0.6);                    }                    else {                        sProps->SetWeight(1.2);                    }                    connectorIn->Connect(pre, post, *sProps);                                }            }            /*for (iterator itPost = begin(); itPost != end(); itPost++){                if(float(rand())/RAND_MAX > likelyhood) continue;  // draw random neurons from the liquid                SpikingNeuron * post = dynamic_cast <SpikingNeuron*> (*itPost);                if(!post) throw runtime_error(string("Neuron: ") +  Utilities::itostr(post->GetId()) + ": Not a SpikingNeuron");                for (iterator itPre=input[i]->begin(); itPre != input[i]->end(); itPre++){                    Neuron * pre = dynamic_cast <Neuron*> (*itPre);                    StaticSynapseProperties * sProps = dynamic_cast < StaticSynapseProperties * >                                                                     (connectorIn->GetDefaultProperties());                    sProps->SetWeight(1.2);                    connectorIn->Connect(pre, post, *sProps);                                }            }*/        }    } else {        LOGGER(1, "No input defined");    }}// Local class OutputLSMTopology::Output::Output(string name) : Topology(name){}LSMTopology::Output::~Output(){}/*void LSMTopology::Output::MakeReadout(const string & nType, unsigned int X, unsigned int Y, unsigned int oNeurons){    LOGGER(3, "Making Outputs");    unsigned int neuronCounter = 1;    NFactory * nf =  dynamic_cast<NFactory*> (Factory::GetRegistry().GetFactory(nType));    if (nf == NULL) throw runtime_error("No neuron type " + nType + " registered!");    NeuronProperties * nProps = nf->MakeNeuronProperties(true);    PhysicalProperties * pProps = nProps->GetPhysicalProps();    // distribute the OutputNeurons alongside at the Y-Z side of the cube starting at X+1, 0, 0    for (int z=0; true; z++){        for (int y = 0; y < Y; y++){            pProps->SetPosition(X + 1, y, z);            Neuron * n = nf->MakeNeuron(Network::GetNetworkRef()->GetNewNeuronId(), nProps, this);            OutputManager::AddNeuronToGroup(n, OUTPUTGROUP);            LOGGER(4, "Output neuron at " << X+1 << ", " << y << ", " << z);            if(++neuronCounter > oNeurons) return;        }    }}*/// Local class InputLSMTopology::Input::Input(string name) : Topology(name){}LSMTopology::Input::~Input(){}InputNeuron * LSMTopology::Input::MakeInputNeuron(int x, int y, int z){    LOGGER(5, "Making Input Neuron at " << x << ", " << y << ", " << z);    NFactory * iFactory = dynamic_cast<NFactory*>                        (Factory::GetRegistry().GetFactory("InputNeuron"));    if(iFactory == NULL) throw runtime_error("Cannot get a NeuronFactory for input");    NeuronProperties * iProps = iFactory->MakeNeuronProperties(true);    iProps->GetPhysicalProps()->SetPosition(x, y, z);    AmIdInt id = Network::GetNetworkRef()->GetNewNeuronId();    InputNeuron * n = dynamic_cast <InputNeuron *> (iFactory->MakeNeuron(id, iProps, this));	OutputManager::AddNeuronToGroup(n, INPUTGROUP);    if(n == NULL) throw runtime_error(string("Creating InputNeuron id ") + Utilities::itostr(id) + "failed");    return n;}   }; // namespace Amygdala

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
综合激情成人伊人| 成人av在线资源网站| 欧美一区二区在线视频| 丝袜美腿亚洲一区二区图片| 日韩欧美久久一区| 国产福利视频一区二区三区| 18成人在线观看| 在线视频综合导航| 秋霞av亚洲一区二区三| 久久久国产午夜精品 | 欧美四级电影网| 日韩在线观看一区二区| 精品成人在线观看| a级高清视频欧美日韩| 夜夜嗨av一区二区三区网页| 欧美一区二区三区影视| 成人中文字幕电影| 五月天久久比比资源色| www久久精品| 欧美午夜电影网| 国内精品视频一区二区三区八戒| 国产精品对白交换视频| 4hu四虎永久在线影院成人| 国产在线不卡视频| 亚洲日穴在线视频| 欧美一区二区三区喷汁尤物| 成人激情小说网站| 日韩经典一区二区| 国产精品传媒视频| 日韩三级免费观看| 9色porny自拍视频一区二区| 五月激情六月综合| 国产亚洲女人久久久久毛片| 欧美丝袜丝nylons| 国v精品久久久网| 亚洲动漫第一页| 国产精品一区一区三区| 国产成人鲁色资源国产91色综| 亚洲色图20p| 精品国产凹凸成av人网站| 在线中文字幕一区二区| 国产麻豆日韩欧美久久| 亚洲bt欧美bt精品| 亚洲天堂a在线| 欧美精品一区二区三区四区| 在线国产电影不卡| 白白色亚洲国产精品| 另类专区欧美蜜桃臀第一页| 亚洲男人天堂av| 国产午夜亚洲精品不卡| 日韩网站在线看片你懂的| 色94色欧美sute亚洲线路一ni | 久久一二三国产| 欧美三级资源在线| 99久久免费视频.com| 国产一区欧美一区| 麻豆精品一区二区av白丝在线| 一区二区高清免费观看影视大全| 国产精品色在线观看| 久久精品视频免费观看| 精品国产乱码久久久久久浪潮| 欧美日韩国产免费一区二区 | 色综合一区二区| 国产福利精品导航| 国产在线视频一区二区| 日韩精品视频网站| 亚洲午夜一二三区视频| 一区二区三区在线播放| 国产精品久久久久久久久快鸭| 欧美极品另类videosde| 久久精品男人天堂av| 国产亚洲欧美激情| 日本一区二区三区高清不卡| 国产亚洲欧洲997久久综合| 久久久久久99精品| 久久蜜桃av一区精品变态类天堂| 欧美电视剧免费观看| 精品日韩99亚洲| 精品国产一区二区国模嫣然| 91精品国产91久久综合桃花| 91精品啪在线观看国产60岁| 欧美高清hd18日本| 欧美一卡二卡在线观看| 日韩免费福利电影在线观看| 久久亚洲精精品中文字幕早川悠里| 精品国产污污免费网站入口 | 欧美国产一区在线| 国产精品久线观看视频| 国产精品国产三级国产普通话蜜臀 | 午夜影视日本亚洲欧洲精品| 亚洲一区二区三区小说| 亚洲永久精品国产| 午夜精品一区在线观看| 日韩av午夜在线观看| 麻豆国产一区二区| 国产一区欧美日韩| av电影天堂一区二区在线| 99精品视频中文字幕| 欧美在线free| 欧美变态凌虐bdsm| 欧美激情一区二区三区四区| 亚洲人成7777| 日韩av在线发布| 国产成人综合在线观看| 不卡av在线网| 欧美老肥妇做.爰bbww视频| 精品国内片67194| 国产精品视频你懂的| 亚洲地区一二三色| 精彩视频一区二区三区| 91老师国产黑色丝袜在线| 日韩一区二区三区四区五区六区| 国产日韩欧美a| 亚洲一区二区美女| 精品写真视频在线观看| 色综合天天狠狠| 欧美精品国产精品| 国产精品久久夜| 奇米在线7777在线精品| 97精品电影院| 精品国产伦一区二区三区观看方式 | 制服.丝袜.亚洲.中文.综合| 久久先锋影音av鲁色资源网| **性色生活片久久毛片| 免费在线看成人av| 99亚偷拍自图区亚洲| 日韩欧美一区在线观看| 亚洲三级小视频| 国产一区二区三区观看| 欧美性xxxxxx少妇| 中文字幕在线不卡一区二区三区| 日本女优在线视频一区二区| 91在线观看地址| 国产日产欧美一区二区视频| 美国毛片一区二区| 欧洲精品视频在线观看| 国产欧美一区二区精品性| 日韩福利视频网| 91福利国产成人精品照片| 国产精品入口麻豆九色| 久久不见久久见中文字幕免费| 欧美在线高清视频| 亚洲免费毛片网站| 成人国产精品免费观看视频| 精品国产一区二区三区忘忧草| 日韩国产高清在线| 在线观看日韩一区| 亚洲欧美日韩一区| 暴力调教一区二区三区| 国产免费成人在线视频| 国产在线精品一区二区三区不卡| 7777精品伊人久久久大香线蕉经典版下载 | 丁香一区二区三区| 精品欧美一区二区三区精品久久| 亚洲 欧美综合在线网络| 在线观看免费亚洲| 一区二区三区色| 色婷婷综合久久久久中文一区二区| 国产精品久久久久婷婷二区次| 国产传媒久久文化传媒| 久久先锋资源网| 日韩欧美不卡一区| 亚洲精品视频自拍| 国产精品123| 91精品国产品国语在线不卡| 亚洲天堂2016| 激情欧美一区二区三区在线观看| 美女视频黄免费的久久| 亚洲成在人线免费| 国产精品麻豆视频| 欧美一区二区日韩| 欧美精品自拍偷拍动漫精品| av激情亚洲男人天堂| 亚洲高清三级视频| 日韩一区二区在线看| 久久www免费人成看片高清| 青青草原综合久久大伊人精品优势| 亚洲午夜视频在线| 一区二区三区在线视频免费 | 亚洲欧洲韩国日本视频| 17c精品麻豆一区二区免费| 亚洲另类春色国产| 亚洲www啪成人一区二区麻豆| 一二三区精品福利视频| 视频一区中文字幕国产| 日本sm残虐另类| 极品美女销魂一区二区三区免费| 国产成人99久久亚洲综合精品| 成人国产电影网| 福利视频网站一区二区三区| 亚洲黄色免费电影| 国产精品另类一区| 国产精品二三区| 免费视频一区二区| 日本精品一区二区三区高清| 亚洲免费大片在线观看| 欧美日韩国产一级片| 国模一区二区三区白浆| 日韩美女久久久| 欧美一区二区三区在线电影|