?? nand.c
字號:
/* --------------------------------------------------------------------------
FILE : nand.c
PURPOSE : NAND driver file
PROJECT : DaVinci User Boot-Loader and Flasher
AUTHOR : Daniel Allred
DATE : Jan-22-2007
HISTORY
v1.0 completion
Daniel Allred - Jan-22-2007
----------------------------------------------------------------------------- */
#ifdef UBL_NAND
#include "ubl.h"
#include "dm644x.h"
#include "uart.h"
#include "nand.h"
static Uint8 gNandTx[MAX_PAGE_SIZE] __attribute__((section(".ddrram2")));
static Uint8 gNandRx[MAX_PAGE_SIZE] __attribute__((section(".ddrram2")));
// Symbol from linker script
extern Uint32 __NANDFlash;
// structure for holding details about the NAND device itself
volatile NAND_INFO gNandInfo;
// Table of ROM supported NAND devices
const NAND_DEVICE_INFO gNandDevInfo[] =
{ // devID, numBlocks, pagesPerBlock, bytesPerPage
{0x6E, 256, 16, 256+8}, /* 1 MB */
{0x68, 256, 16, 256+8}, /* 1 MB */
{0xEC, 256, 16, 256+8}, /* 1 MB */
{0xE8, 256, 16, 256+8}, /* 1 MB */
{0xEA, 512, 16, 256+8}, /* 2 MB */
{0xE3, 512, 16, 512+16}, /* 4 MB */
{0xE5, 512, 16, 512+16}, /* 4 MB */
{0xE6, 1024, 16, 512+16}, /* 8 MB */
{0x39, 1024, 16, 512+16}, /* 8 MB */
{0x6B, 1024, 16, 512+16}, /* 8 MB */
{0x73, 1024, 32, 512+16}, /* 16 MB */
{0x33, 1024, 32, 512+16}, /* 16 MB */
{0x75, 2048, 32, 512+16}, /* 32 MB */
{0x35, 2048, 32, 512+16}, /* 32 MB */
{0x43, 1024, 32, 512+16}, /* 16 MB 0x1243 */
{0x45, 2048, 32, 512+16}, /* 32 MB 0x1245 */
{0x53, 1024, 32, 512+16}, /* 16 MB 0x1253 */
{0x55, 2048, 32, 512+16}, /* 32 MB 0x1255 */
{0x36, 4096, 32, 512+16}, /* 64 MB */
{0x46, 4096, 32, 512+16}, /* 64 MB 0x1346 */
{0x56, 4096, 32, 512+16}, /* 64 MB 0x1356 */
{0x76, 4096, 32, 512+16}, /* 64 MB */
{0x74, 8192, 32, 512+16}, /* 128 MB 0x1374 */
{0x79, 8192, 32, 512+16}, /* 128 MB */
{0x71, 16384, 32, 512+16}, /* 256 MB */
{0xF1, 1024, 64, 2048+64}, /* 128 MB - Big Block */
{0xA1, 1024, 64, 2048+64}, /* 128 MB - Big Block */
{0xAA, 2048, 64, 2048+64}, /* 256 MB - Big Block */
{0xDA, 2048, 64, 2048+64}, /* 256 MB - Big Block */
{0xDC, 4096, 64, 2048+64}, /* 512 MB - Big Block */
{0xAC, 4096, 64, 2048+64}, /* 512 MB - Big Block */
{0xB1, 1024, 64, 2048+64}, /* 128 MB - Big Block 0x22B1 */
{0xC1, 1024, 64, 2048+64}, /* 128 MB - Big Block 0x22C1 */
{0x00, 0, 0, 0} /* Dummy null entry to indicate end of table*/
};
VUint8 *flash_make_addr (Uint32 baseAddr, Uint32 offset)
{
return ((VUint8 *) ( baseAddr + offset ));
}
void flash_write_data(PNAND_INFO pNandInfo, Uint32 offset, Uint32 data)
{
volatile FLASHPtr addr;
FLASHData dataword;
dataword.l = data;
addr.cp = flash_make_addr (pNandInfo->flashBase, offset);
switch (pNandInfo->busWidth)
{
case BUS_8BIT:
*addr.cp = dataword.c;
break;
case BUS_16BIT:
*addr.wp = dataword.w;
break;
}
}
void flash_write_cmd (PNAND_INFO pNandInfo, Uint32 cmd)
{
flash_write_data(pNandInfo, NAND_CLE_OFFSET, cmd);
}
void flash_write_addr (PNAND_INFO pNandInfo, Uint32 addr)
{
flash_write_data(pNandInfo, NAND_ALE_OFFSET, addr);
}
void flash_write_bytes(PNAND_INFO pNandInfo, void* pSrc, Uint32 numBytes)
{
volatile FLASHPtr destAddr, srcAddr;
Uint32 i;
srcAddr.cp = (VUint8*) pSrc;
destAddr.cp = flash_make_addr (pNandInfo->flashBase, NAND_DATA_OFFSET );
switch (pNandInfo->busWidth)
{
case BUS_8BIT:
for(i=0;i<( numBytes );i++)
*destAddr.cp = *srcAddr.cp++;
break;
case BUS_16BIT:
for(i=0;i<( numBytes >> 1);i++)
*destAddr.wp = *srcAddr.wp++;
break;
}
}
void flash_write_addr_cycles(PNAND_INFO pNandInfo, Uint32 block, Uint32 page)
{
flash_write_addr_bytes(pNandInfo, pNandInfo->numColAddrBytes, 0x00000000);
flash_write_row_addr_bytes(pNandInfo, block, page);
}
void flash_write_addr_bytes(PNAND_INFO pNandInfo, Uint32 numAddrBytes, Uint32 addr)
{
Uint32 i;
for (i=0; i<numAddrBytes; i++)
{
flash_write_addr(pNandInfo, ( (addr >> (8*i) ) & 0xff) );
}
}
void flash_write_row_addr_bytes(PNAND_INFO pNandInfo, Uint32 block, Uint32 page)
{
Uint32 row_addr;
row_addr = (block << (pNandInfo->blkShift - pNandInfo->pageShift)) | page;
flash_write_addr_bytes(pNandInfo, pNandInfo->numRowAddrBytes, row_addr);
}
Uint32 flash_read_data (PNAND_INFO pNandInfo)
{
volatile FLASHPtr addr;
FLASHData cmdword;
cmdword.l = 0x0;
addr.cp = flash_make_addr (pNandInfo->flashBase, NAND_DATA_OFFSET );
switch (gNandInfo.busWidth)
{
case BUS_8BIT:
cmdword.c = *addr.cp;
break;
case BUS_16BIT:
cmdword.w = *addr.wp;
break;
}
return cmdword.l;
}
void flash_read_bytes(PNAND_INFO pNandInfo, void* pDest, Uint32 numBytes)
{
volatile FLASHPtr destAddr, srcAddr;
Uint32 i;
destAddr.cp = (VUint8*) pDest;
srcAddr.cp = flash_make_addr (pNandInfo->flashBase, NAND_DATA_OFFSET );
switch (pNandInfo->busWidth)
{
case BUS_8BIT:
for(i=0;i<( numBytes );i++)
*destAddr.cp++ = *srcAddr.cp;
break;
case BUS_16BIT:
for(i=0;i<( numBytes >> 1);i++)
*destAddr.wp++ = *srcAddr.wp;
break;
}
}
void flash_swap_data(PNAND_INFO pNandInfo, Uint32* data)
{
Uint32 i,temp = *data;
volatile FLASHPtr dataAddr, tempAddr;
dataAddr.cp = flash_make_addr((Uint32) data, 3);
tempAddr.cp = flash_make_addr((Uint32) &temp,0);
switch (gNandInfo.busWidth)
{
case BUS_8BIT:
for(i=0; i<4; i++)
*dataAddr.cp-- = *tempAddr.cp++;
break;
case BUS_16BIT:
for(i=0; i<2; i++)
*dataAddr.wp-- = *tempAddr.wp++;
break;
}
}
// Poll bit of NANDFSR to indicate ready
Uint32 NAND_WaitForRdy(Uint32 timeout) {
VUint32 cnt;
cnt = timeout;
waitloop(200);
while( !(AEMIF->NANDFSR & NAND_NANDFSR_READY) && ((cnt--) > 0) )
if(cnt == 0)
{
UARTSendData((Uint8 *)"NANDWaitForRdy() Timeout!\n", FALSE);
return E_FAIL;
}
return E_PASS;
}
// Wait for the status to be ready in NAND register
// There were some problems reported in DM320 with Ready/Busy pin
// not working with all NANDs. So this check has also been added.
Uint32 NAND_WaitForStatus(Uint32 timeout) {
VUint32 cnt;
Uint32 status;
cnt = timeout;
do
{
flash_write_cmd((PNAND_INFO)&gNandInfo,NAND_STATUS);
status = flash_read_data((PNAND_INFO)&gNandInfo) & (NAND_STATUS_ERROR | NAND_STATUS_BUSY);
cnt--;
}
while((cnt>0) && !status);
if(cnt == 0)
{
UARTSendData((Uint8 *)"NANDWaitForStatus() Timeout!\n", FALSE);
return E_FAIL;
}
return E_PASS;
}
// Read the current ECC calculation and restart process
Uint32 NAND_ECCReadAndRestart (PNAND_INFO pNandInfo)
{
Uint32 retval;
// Read and mask appropriate (based on CSn space flash is in) ECC regsiter
retval = ((Uint32*)(&(AEMIF->NANDF1ECC)))[pNandInfo->CSOffset] & pNandInfo->ECCMask;
// Write appropriate bit to start ECC calcualtions
AEMIF->NANDFCR |= (1<<(8 + (pNandInfo->CSOffset)));
return retval;
}
// Initialze NAND interface and find the details of the NAND used
Uint32 NAND_Init()
{
Uint32 width, *CSRegs;
UARTSendData((Uint8 *) "Initializing NAND flash...\r\n", FALSE);
// Set NAND flash base address
gNandInfo.flashBase = (Uint32) &(__NANDFlash);
//Get the CSOffset (can be 0 through 3 - corresponds with CS2 through CS5)
gNandInfo.CSOffset = (gNandInfo.flashBase >> 25) - 1;
// Setting the nand_width = 0(8 bit NAND) or 1(16 bit NAND). AEMIF CS2 bus Width
// is given by the BOOTCFG(bit no.5)
width = ( ( (SYSTEM->BOOTCFG) & 0x20) >> 5);
gNandInfo.busWidth = (width)?BUS_16BIT:BUS_8BIT;
// Setup AEMIF registers for NAND
CSRegs = (Uint32*) &(AEMIF->AB1CR);
CSRegs[gNandInfo.CSOffset] = 0x3FFFFFFC | width; // Set correct ABxCR reg
AEMIF->NANDFCR |= (0x1 << (gNandInfo.CSOffset)); // NAND enable for CSx
NAND_ECCReadAndRestart((PNAND_INFO)&gNandInfo);
// Send reset command to NAND
flash_write_cmd( (PNAND_INFO)&gNandInfo, NAND_RESET );
if ( NAND_WaitForRdy(NAND_TIMEOUT) != E_PASS )
return E_FAIL;
return NAND_GetDetails();
}
// Get details of the NAND flash used from the id and the table of NAND devices
Uint32 NAND_GetDetails()
{
Uint32 deviceID,i,j;
// Issue device read ID command
flash_write_cmd( (PNAND_INFO)&gNandInfo, NAND_RDID);
flash_write_addr( (PNAND_INFO)&gNandInfo, NAND_RDIDADD);
// Read ID bytes
j = flash_read_data( (PNAND_INFO)&gNandInfo ) & 0xFF;
deviceID = flash_read_data( (PNAND_INFO)&gNandInfo ) & 0xFF;
j = flash_read_data( (PNAND_INFO)&gNandInfo ) & 0xFF;
j = flash_read_data( (PNAND_INFO)&gNandInfo ) & 0xFF;
i=0;
while (gNandDevInfo[i].devID != 0x00)
{
if(deviceID == gNandDevInfo[i].devID)
{
gNandInfo.devID = (Uint8) gNandDevInfo[i].devID;
gNandInfo.pagesPerBlock = gNandDevInfo[i].pagesPerBlock;
gNandInfo.numBlocks = gNandDevInfo[i].numBlocks;
gNandInfo.bytesPerPage = NANDFLASH_PAGESIZE(gNandDevInfo[i].bytesPerPage);
gNandInfo.spareBytesPerPage = gNandDevInfo[i].bytesPerPage - gNandInfo.bytesPerPage;
// Assign the big_block flag
gNandInfo.bigBlock = (gNandInfo.bytesPerPage == 2048)?TRUE:FALSE;
// Setup address shift values
j = 0;
while( (gNandInfo.pagesPerBlock >> j) > 1)
{
j++;
}
gNandInfo.blkShift = j;
gNandInfo.pageShift = (gNandInfo.bigBlock)?16:8;
gNandInfo.blkShift += gNandInfo.pageShift;
// Set number of column address bytes needed
gNandInfo.numColAddrBytes = gNandInfo.pageShift >> 3;
j = 0;
while( (gNandInfo.numBlocks >> j) > 1)
{
j++;
}
// Set number of row address bytes needed
if ( (gNandInfo.blkShift + j) <= 24 )
{
gNandInfo.numRowAddrBytes = 3 - gNandInfo.numColAddrBytes;
}
else if ((gNandInfo.blkShift + j) <= 32)
{
gNandInfo.numRowAddrBytes = 4 - gNandInfo.numColAddrBytes;
}
else
{
gNandInfo.numRowAddrBytes = 5 - gNandInfo.numColAddrBytes;
}
// Set the ECC bit mask
if (gNandInfo.bytesPerPage < 512)
gNandInfo.ECCMask = 0x07FF07FF;
else
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -