?? nor.c
字號:
/* --------------------------------------------------------------------------
FILE : nor.c
PURPOSE : NOR driver file
PROJECT : DaVinci User Boot-Loader and Flasher
AUTHOR : Daniel Allred
DATE : Jan-22-2007
HISTORY
v1.00 completion
Daniel Allred - Jan-22-2007
----------------------------------------------------------------------------- */
#ifdef UBL_NOR
#include "ubl.h"
#include "dm644x.h"
#include "uart.h"
#include "nor.h"
//External and global static variables
extern Uint32 __NORFlash;
volatile NOR_INFO gNorInfo;
// ----------------- Bus Width Agnostic commands -------------------
VUint8 *flash_make_addr (Uint32 blkAddr, Uint32 offset)
{
return ((VUint8 *) ( blkAddr + (offset * gNorInfo.maxTotalWidth)));
}
void flash_make_cmd (Uint8 cmd, void *cmdbuf)
{
Int32 i;
Uint8 *cp = (Uint8 *) cmdbuf;
for (i = gNorInfo.busWidth; i > 0; i--)
*cp++ = (i & (gNorInfo.chipOperatingWidth - 1)) ? 0x00 : cmd;
}
void flash_write_cmd (Uint32 blkAddr, Uint32 offset, Uint8 cmd)
{
volatile FLASHPtr addr;
FLASHData cmdword;
addr.cp = flash_make_addr (blkAddr, offset);
flash_make_cmd ( cmd, &cmdword);
switch (gNorInfo.busWidth)
{
case BUS_8BIT:
*addr.cp = cmdword.c;
break;
case BUS_16BIT:
*addr.wp = cmdword.w;
break;
}
}
void flash_write_data(Uint32 address, Uint32 data)
{
volatile FLASHPtr pAddr;
FLASHData dataword;
dataword.l = data;
pAddr.cp = (VUint8*) address;
switch (gNorInfo.busWidth)
{
case BUS_8BIT:
*pAddr.cp = dataword.c;
break;
case BUS_16BIT:
*pAddr.wp = dataword.w;
break;
}
}
void flash_write_databuffer(Uint32* address, void* data, Uint32 numBytes)
{
volatile FLASHPtr pAddr, pData;
VUint8* endAddress;
pData.cp = (VUint8*) data;
pAddr.cp = (VUint8*) *address;
endAddress =(VUint8*)((*address)+numBytes);
while (pAddr.cp < endAddress)
{
switch (gNorInfo.busWidth)
{
case BUS_8BIT:
*pAddr.cp++ = *pData.cp++;
break;
case BUS_16BIT:
*pAddr.wp++ = *pData.wp++;
break;
}
}
// Put last data written at start of data buffer - For AMD verification
switch (gNorInfo.busWidth)
{
case BUS_8BIT:
*address = (Uint32)(endAddress-1);
break;
case BUS_16BIT:
*address = (Uint32)(endAddress-2);
break;
}
}
Uint32 flash_verify_databuffer(Uint32 address, void* data, Uint32 numBytes)
{
volatile FLASHPtr pAddr, pData;
VUint8* endAddress;
pData.cp = (VUint8*) data;
pAddr.cp = (VUint8*) address;
endAddress =(VUint8*)(address+numBytes);
while (pAddr.cp < endAddress)
{
switch (gNorInfo.busWidth)
{
case BUS_8BIT:
if ( (*pAddr.cp++) != (*pData.cp++) )
return E_FAIL;
break;
case BUS_16BIT:
if ( (*pAddr.wp++) != (*pData.wp++) )
return E_FAIL;
break;
}
}
return E_PASS;
}
Uint32 flash_read_data(Uint32 address, Uint32 offset)
{
volatile FLASHPtr pAddr;
FLASHData dataword;
dataword.l = 0x00000000;
pAddr.cp = flash_make_addr(address, offset);
switch (gNorInfo.busWidth)
{
case BUS_8BIT:
dataword.c = *pAddr.cp;
break;
case BUS_16BIT:
dataword.w = *pAddr.wp;
break;
}
return dataword.l;
}
FLASHData flash_read_CFI_bytes (Uint32 blkAddr, Uint32 offset, Uint8 numBytes)
{
Int32 i;
FLASHData readword;
Uint8* pReadword = &readword.c;
for (i = 0; i < numBytes; i++)
{
*pReadword++ = *(flash_make_addr (blkAddr, offset+i));
}
return readword;
}
Bool flash_data_isequal (Uint32 blkAddr, Uint32 offset, Uint32 val)
{
FLASHData testword_a, testword_b;
Bool retval = FALSE;
testword_a.l = val;
testword_b.l = flash_read_data(blkAddr, offset);
switch (gNorInfo.busWidth)
{
case BUS_8BIT:
retval = (testword_a.c == testword_b.c);
break;
case BUS_16BIT:
retval = (testword_a.w == testword_b.w);
break;
}
return retval;
}
Bool flash_CFI_isequal (Uint32 blkAddr, Uint32 offset, Uint8 val)
{
volatile FLASHPtr addr;
FLASHData testword;
Bool retval = TRUE;
addr.cp = flash_make_addr (blkAddr, offset);
flash_make_cmd ( val, &testword);
switch (gNorInfo.busWidth)
{
case BUS_8BIT:
retval = (testword.c == *addr.cp);
break;
case BUS_16BIT:
retval = (testword.w == *addr.wp);
break;
}
return retval;
}
Bool flash_issetall (Uint32 blkAddr, Uint32 offset, Uint8 mask)
{
volatile FLASHPtr addr;
FLASHData maskword;
maskword.l = 0x00000000;
Bool retval = TRUE;
addr.cp = flash_make_addr (blkAddr, offset);
flash_make_cmd ( mask, &maskword);
switch (gNorInfo.busWidth)
{
case BUS_8BIT:
retval = ((maskword.c & *addr.cp) == maskword.c);
break;
case BUS_16BIT:
retval = ((maskword.w & *addr.wp) == maskword.w);
break;
}
return retval;
}
Bool flash_issetsome (Uint32 blkAddr, Uint32 offset, Uint8 mask)
{
volatile FLASHPtr addr;
FLASHData maskword;
Bool retval = TRUE;
addr.cp = flash_make_addr (blkAddr, offset);
flash_make_cmd ( mask, &maskword);
switch (gNorInfo.busWidth)
{
case BUS_8BIT:
retval = (maskword.c & *addr.cp);
break;
case BUS_16BIT:
retval = (maskword.w & *addr.wp);
break;
}
return retval;
}
//Initialize the AEMIF subsystem and settings
Uint32 NOR_Init()
{
Uint8 width = ( ( (SYSTEM->BOOTCFG) >> 5) & 0x1 );
// Select ASYNC EMIF Address Lines
SYSTEM->PINMUX[0] = 0xC1F;
// Program Asynchronous Wait Cycles Configuration Control Register
AEMIF->AWCCR |= 0x0 ;
// Program Asynchronous Bank3-5 Register
AEMIF->AB1CR = 0x3FFFFFFC | width;
AEMIF->AB2CR = 0x3FFFFFFC | width;
AEMIF->AB3CR = 0x3FFFFFFC | width;
AEMIF->AB4CR = 0x3FFFFFFC | width;
/*AEMIF->AB1CR = 0
| ( 0 << 31 ) // selectStrobe = 0;
| ( 0 << 30 ) // extWait = 0;
| ( 0 << 26 ) // writeSetup = 0; // 0 ns
| ( 3 << 20 ) // writeStrobe = 3; // 35 ns
| ( 0 << 17 ) // writeHold = 0; // 0 ns
| ( 3 << 13 ) // readSetup = 3; // 30 ns
| ( 10<< 7 ) // readStrobe = 10; // 120 ns
| ( 0 << 4 ) // readHold = 0; // 0 ns
| ( 3 << 2 ) // turnAround = 3; // ?? ns ( MAX TIMEOUT )
| ( 1 << 0 ) // asyncSize = 1; // 16-bit bus
;*/
//Init the FlashInfo structure
gNorInfo.flashBase = (Uint32) &(__NORFlash);
// Set width to 8 or 16
gNorInfo.busWidth = (width)?BUS_16BIT:BUS_8BIT;
// Perform CFI Query
if (QueryCFI(gNorInfo.flashBase) == E_PASS)
{
// Below is specifically needed to check for AMD flash on DVEVM (rev. D or earlier)
// since it's top address line is not connected (don't ask me why)
if (gNorInfo.numberRegions == 1)
{
if ( QueryCFI( gNorInfo.flashBase+(gNorInfo.flashSize>>1) ) == E_PASS )
{
gNorInfo.flashSize >>= 1;
gNorInfo.numberBlocks[0] >>= 1;
}
}
}
else
{
UARTSendData("CFI query failed.\r\n", FALSE);
return E_FAIL;
}
// Setup function pointers
UARTSendData("NOR Initialization:\r\n", FALSE);
UARTSendData("\tCommand Set: ", FALSE);
switch (gNorInfo.commandSet)
{
case AMD_BASIC_CMDSET:
case AMD_EXT_CMDSET:
Flash_Erase = &AMD_Erase;
Flash_BufferWrite = &AMD_BufferWrite;
Flash_Write = &AMD_Write;
Flash_ID = &AMD_ID;
UARTSendData("AMD\r\n", FALSE);
break;
case INTEL_BASIC_CMDSET:
case INTEL_EXT_CMDSET:
Flash_Erase = &Intel_Erase;
Flash_BufferWrite = &Intel_BufferWrite;
Flash_Write = &Intel_Write;
Flash_ID = &Intel_ID;
UARTSendData("Intel\r\n", FALSE);
break;
default:
Flash_Write = &Unsupported_Write;
Flash_BufferWrite = &Unsupported_BufferWrite;
Flash_Erase = &Unsupported_Erase;
Flash_ID = &Unsupported_ID;
UARTSendData("Unknown\r\n", FALSE);
break;
}
if ( (*Flash_ID)(gNorInfo.flashBase) != E_PASS)
{
UARTSendData("NOR ID failed.\r\n", FALSE);
return E_FAIL;
}
UARTSendData("\tManufacturer: ", FALSE);
switch(gNorInfo.manfID)
{
case AMD:
UARTSendData("AMD", FALSE);
break;
case FUJITSU:
UARTSendData("FUJITSU", FALSE);
break;
case INTEL:
UARTSendData("INTEL", FALSE);
break;
case MICRON:
UARTSendData("MICRON", FALSE);
break;
case SAMSUNG:
UARTSendData("SAMSUNG", FALSE);
break;
case SHARP:
UARTSendData("SHARP", FALSE);
break;
default:
UARTSendData("Unknown", FALSE);
break;
}
UARTSendData("\r\n", FALSE);
UARTSendData("\tSize (in bytes): 0x", FALSE);
UARTSendInt( gNorInfo.flashSize );
UARTSendData("\r\n", FALSE);
return E_PASS;
}
// Query the chip to check for CFI table and data
Uint32 QueryCFI( Uint32 baseAddress )
{
Int32 i;
Uint32 blkVal;
// Six possible NOR Flash Configurations of DM644x
// 1) Bus in x8 mode, x8 only device
// 2) Bus in x8 mode, single x8/x16 flash operating in x8 mode
// 3) Bus in x16 mode, single x8/x16 or x16-only flash operating in x16 mode
// 4) Bus in x16 mode, two x8 flash operating in parallel.
// 5) Bus in x16 mode, two x8/x16 flash, each in x8 mode, operating in parallel
// 6) Bus in x16 mode, single x16/x32 flash operating in x16 mode
for (gNorInfo.chipOperatingWidth = BUS_8BIT; gNorInfo.chipOperatingWidth <= gNorInfo.busWidth; gNorInfo.chipOperatingWidth <<= 1)
{
for (gNorInfo.maxTotalWidth = gNorInfo.busWidth; gNorInfo.maxTotalWidth <= (gNorInfo.busWidth*2); gNorInfo.maxTotalWidth <<= 1)
{
// Specify number of devices
gNorInfo.numberDevices = 0;
while ( gNorInfo.numberDevices * gNorInfo.chipOperatingWidth < gNorInfo.busWidth)
gNorInfo.numberDevices++;
// Enter the CFI Query mode
flash_write_cmd (baseAddress, 0, CFI_EXIT_CMD);
flash_write_cmd (baseAddress, CFI_QRY_CMD_ADDR, CFI_QRY_CMD);
// Check for Query QRY values
if ( flash_CFI_isequal ( baseAddress, CFI_Q, 'Q') &&
flash_CFI_isequal ( baseAddress, CFI_R, 'R') &&
flash_CFI_isequal ( baseAddress, CFI_Y, 'Y') )
{
gNorInfo.commandSet = (CMDSET) (flash_read_CFI_bytes(baseAddress,CFI_CMDSET,2).w);
gNorInfo.flashSize = 0x1 << flash_read_CFI_bytes(baseAddress,CFI_DEVICESIZE,1).c * gNorInfo.numberDevices;
gNorInfo.numberRegions = flash_read_CFI_bytes(baseAddress,CFI_NUMBLKREGIONS,1).c;
gNorInfo.bufferSize = 0x1 << flash_read_CFI_bytes(baseAddress,CFI_WRITESIZE,2).w * gNorInfo.numberDevices;
// Get info on sector sizes in each erase region of device
for (i = 0;i < gNorInfo.numberRegions; i++)
{
blkVal = flash_read_CFI_bytes(baseAddress,(CFI_BLKREGIONS+i*CFI_BLKREGIONSIZE),4).l;
gNorInfo.numberBlocks[i] = (blkVal&0x0000FFFF) + 1;
gNorInfo.blockSize[i] = ((blkVal&0xFFFF0000) ? ( ((blkVal>>16)&0xFFFF) * 256) : 128) * gNorInfo.numberDevices;
}
// Exit CFI mode
flash_write_cmd (baseAddress, 0, CFI_EXIT_CMD);
return E_PASS;
}
}
}
flash_write_cmd (baseAddress, 0, CFI_EXIT_CMD);
return E_FAIL;
}
// -------------------------------------------------------------------------
// Manufacturer Specific Commands
// -------------------------------------------------------------------------
// ------------------------ Default Empty ---------------------------
Uint32 Unsupported_Write( Uint32 address, VUint32 data)
{
return E_FAIL;
}
Uint32 Unsupported_BufferWrite(Uint32 address, VUint8 data[], Uint32 length )
{
return E_FAIL;
}
Uint32 Unsupported_Erase(Uint32 address)
{
return E_FAIL;
}
Uint32 Unsupported_ID(Uint32 address)
{
return E_FAIL;
}
// -------------------- Begin of Intel specific commands -----------------------
//ID flash
Uint32 Intel_ID( Uint32 baseAddress )
{
// Intel Exit back to read array mode
Intel_Soft_Reset_Flash();
// Write ID command
flash_write_cmd(baseAddress, 0, INTEL_ID_CMD);
//Read Manufacturer's ID
gNorInfo.manfID = (MANFID) flash_read_data(baseAddress, INTEL_MANFID_ADDR);
// Read Device ID
gNorInfo.devID1 = (Uint16) (MANFID) flash_read_data(baseAddress, INTEL_DEVID_ADDR);
gNorInfo.devID2 = 0x0000;
// Intel Exit back to read array mode
Intel_Soft_Reset_Flash();
return E_PASS;
}
// Reset back to Read array mode
void Intel_Soft_Reset_Flash()
{
// Intel Exit back to read array mode
flash_write_cmd(gNorInfo.flashBase,0,INTEL_RESET);
}
// Clear status register
void Intel_Clear_Status()
{
// Intel clear status
flash_write_cmd(gNorInfo.flashBase,0,INTEL_CLEARSTATUS_CMD);
}
// Remove block write protection
Uint32 Intel_Clear_Lock(VUint32 blkAddr)
{
// Write the Clear Lock Command
flash_write_cmd(blkAddr,0,INTEL_LOCK_CMD0);
flash_write_cmd(blkAddr,0,INTEL_UNLOCK_BLOCK_CMD);
// Check Status
return Intel_Lock_Status_Check();
}
// Write-protect a block
Uint32 Intel_Set_Lock(VUint32 blkAddr)
{
// Write the Set Lock Command
flash_write_cmd(blkAddr,0,INTEL_LOCK_CMD0);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -