亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? satellite.tex

?? 對IEEE 802.11e里的分布式信道接入算法EDCA進行改進
?? TEX
?? 第 1 頁 / 共 4 頁
字號:
%\documentstyle[11pt,fullpage]{article}%\setlength{\parindent}{0 in}%\setlength{\parskip}{.1in}%\setlength{\topmargin}{-0.5in}%\setlength{\textheight}{8.5in}%\begin{document}\chapter{Satellite Networking in \ns}\label{chap:satellite}This chapter describes extensions that enable the simulation of satellitenetworks in \ns.  In particular, these extensions enable \ns~to modelthe following:  i) traditional geostationary ``bent-pipe'' satellites with multiple users per uplink/downlink and asymmetric links, ii) geostationary satellites with processing payloads (either regenerative payloads or full packet switching), and iii) polar orbiting LEO constellations such as Iridium and Teledesic.  These satellite models are principally aimed at using \ns~to study networking aspects of satellite systems; in particular, MAC, link layer, routing, and transport protocols.  %\paragraph{Notice (caveat emptor)} %This code (including perhaps the APIs at OTcl level) is likely to change %over the next few months (as of this writing in June 1999) as the \ns~%developers work on integrating the structure of satellite nodes, %wireless nodes, hierarchical nodes, etc.  In particular, we plan on%modifying the code to support mixed-node topologies (e.g., simulations%consisting of traditional \ns~nodes and satellite nodes) and running existing %unicast and multicast OTcl-based routing protocols.  \nam~~is %not currently supported with these extensions.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\section{Overview of satellite models}\label{sec:satellite/overview}Exact simulation of satellite networks requires adetailed modelling of radio frequency characteristics (interference, fading),protocol interactions (e.g., interactions of residual burst errors on the link with error checking codes), and second-order orbital effects (precession,gravitational anomalies, etc.).  However, in order to study fundamentalcharacteristics of satellite networks from a {\em networking} perspective,certain features may be abstracted out.  For example, the performance ofTCP over satellite links is impacted little by using an approximate rather than detailed channel model-- performance can be characterized to first orderby the overall packet loss probability.  This is the approach taken in thissimulation model-- to create a framework for studying transport, routing, and MAC protocols in a satellite environment consisting ofgeostationary satellites or constellations of polar-orbiting low-earth-orbit (LEO) satellites.  Of course, users may extend these modelsto provide more detail at a given layer.   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\subsection{Geostationary satellites}\label{sec:satellite/overview/geo}Geostationary satellites orbit the Earth at an altitude of 22,300 miles above the equator.  The position of the satellites is specified in termsof the longitude of the nadir point (subsatellite point on the Earth'ssurface).  In practice, geostationary satellites can drift from theirdesignated location due to gravitational perturbations-- these effectsare not modelled in \ns.   Two kinds of geostationary satellites can be modelled.  Traditional``bent-pipe'' geostationary satellites are merely repeaters in orbit--all packets received by such satellites on an uplink channel are pipedthrough at RF frequencies to a corresponding downlink, and the satellite nodeis not visible to routing protocols.   Newer satellites willincreasingly use baseband processing, both to regenerate the digital signal andto perform fast packet switching on-boardthe spacecraft.  In the simulations, these satellites can be modelled more like traditional \ns~nodes with classifiers and routing agents.    Previously, users could simulate geostationary satellite links by simplysimulating a long delay link using traditional \ns~links and nodes.  Thekey enhancement of these satellite extensions with respect to geostationarysatellites is the capability to simulate MAC protocols.  Users can nowdefine many terminals at different locations on the Earth's surface andconnect them to the same satellite uplink and downlink channels, and thepropagation delays in the system (which are slightly different for eachuser) are accurately modelled.  In addition, the uplink and downlink channelscan be defined differently (perhaps with different bandwidths or error models).%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\subsection{Low-earth-orbiting satellites}\label{sec:satellite/overview/leo}\begin{figure}    \centerline{\includegraphics{sat-constellation}}    \caption{Example of a polar-orbiting LEO constellation.  This figurewas generated using the SaVi software package from the geometry center at theUniversity of Minnesota.}    \label{fig:constellation}\end{figure}Polar orbiting satellite systems, such as Iridium and the proposed Teledesic system, canbe modelled in \ns.   In particular, the simulator supports the specificationof satellites that orbit in purely circular planes, for which the neighboring planes are co-rotating.There are other non-geostationary constellation configurations  possible (e.g., Walker constellations)-- the interested user may develop newconstellation classes to simulate these other constellation types.  Inparticular, this would mainly require defining new intersatellite link handoff procedures.The following are the parameters of satellite constellations that can currentlybe simulated:\begin{itemize}        \item {\bf Basic constellation definition} Includes satellite altitude,number of satellites, number of planes, number of satellites per plane.        \item {\bf Orbits} Orbit inclination can range continuouslyfrom 0 to 180 degrees (inclination greater than 90 degrees corresponds toretrograde orbits).  Orbit eccentricity is not modeled.  Nodal precession is not modeled.  Intersatellite spacing within a given plane is fixed.  Relativephasing between planes is fixed (although some systems may not control phasingbetween planes).        \item {\bf Intersatellite (ISL) links} For polar orbiting constellations,intraplane, interplane, and crossseam ISLs can be defined.  Intraplane ISLsexist between satellites in the same plane and are never deactivated or handed off.  Interplane ISLs exist between satellites of neighboring co-rotating planes.  These links are deactivated near the poles (abovethe ``ISL latitude threshold'' in the table) because the antenna pointing mechanism cannot track these links in the polar regions.  Like intraplane ISLs,interplane ISLs are never handed off.  Crossseam ISLs may exist in a constellation between satellites in counter-rotating planes (where the planes form a so-called ``seam'' in the topology).   GEO ISLs can also bedefined for constellations of geostationary satellites.        \item {\bf Ground to satellite (GSL) links}  Multiple terminalscan be connected to a single GSL satellite channel.  GSL links for GEO satellites are static, while GSL links for LEO channels are periodically handed off as described below.          \item {\bf Elevation mask} The elevation angle above which a GSL link can be operational.  Currently, if the (LEO) satellite serving a terminaldrops below the elevation mask, the terminal searches for a new satelliteabove the elevation mask.  Satellite terminals check for handoff opportunitiesaccording to a timeout interval specified by the user.  Each terminalinitiates handoffs asynchronously; it would be possible also to definea system in which each handoff occurs synchronously in the system.\end{itemize}The following table lists parameters used for example simulation scriptsof the Iridium\footnote{Asidefrom the link bandwidths (Iridium is a narrowband system only), theseparameters are very close to what a broadband version of the Iridium systemmight look like.}  and Teledesic\footnote{These Teledesic constellation parameters are subject to change; thanks to Marie-Jose Montpetit of Teledesic for providingtentative parameters as of January 1999.  The link bandwidths are notnecessarily accurate.} systems.\begin{table}[h]\begin{center}{\tt\begin{tabular}{|c||c|c|}\hline& {\bf Iridium} & {\bf Teledesic}\\\hline\hline{\bf Altitude} & \rm 780 km& \rm 1375 km\\\hline{\bf Planes} & \rm 6& \rm 12\\\hline{\bf Satellites per plane} & \rm 11 & \rm 24\\\hline{\bf Inclination (deg)} & \rm 86.4 & \rm 84.7\\\hline{\bf Interplane separation (deg)} & \rm 31.6 & \rm 15\\\hline{\bf Seam separation (deg)} & \rm 22 & \rm 15\\\hline{\bf Elevation mask (deg)} & \rm 8.2 & \rm 40\\\hline{\bf Intraplane phasing} & \rm yes & \rm yes\\\hline{\bf Interplane phasing} & \rm yes & \rm no\\\hline{\bf ISLs per satellite} & \rm 4  & \rm 8\\\hline{\bf ISL bandwidth} & \rm 25 Mb/s  & \rm 155 Mb/s\\\hline{\bf Up/downlink bandwidth} & \rm 1.5 Mb/s  & \rm 1.5 Mb/s\\\hline{\bf Cross-seam ISLs} & \rm no & \rm yes\\\hline{\bf ISL latitude threshold (deg)} & \rm 60 & \rm 60\\\hline\end{tabular}}\end{center}\caption{Simulation parameters used for modeling a broadband version ofthe Iridium system and the proposed 288-satellite Teledesic system.Both systems are examples of polar orbiting constellations.}\end{table}\clearpage%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\section{Using the satellite extensions}\label{sec:satellite/usage}\begin{figure}    \centerline{\includegraphics{sat-spherical}}    \caption{Spherical coordinate system used by satellite nodes}    \label{fig:spherical}\end{figure}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\subsection{Nodes and node positions}\label{sec:satellite/usage/nodes}There are two basic kinds of satellite nodes:  {\em geostationary}  and {\em non-geostationary} satellite nodes.  In addition, {\em terminal} nodescan be placed on the Earth's surface.  As is explained later in Section \ref{sec:satellite/implementation},each of these three different types of nodes is actually implemented with the same \code{class SatNode} object, but with different position,handoff manager,  and link objects attached.  The position object keeps track of the satellite node's location in the coordinate system as a function of the elapsed simulation time.This position information is used to determine link propagation delays andappropriate times for link handoffs. Figure \ref{fig:spherical} illustrates the spherical coordinate system,and the corresponding Cartesian coordinate system.The coordinate system is centered at the Earth's center, and the $z$ axis coincides with the Earth's axis of rotation.  $(R,\theta,\phi) = (6378 km, 90^o, 0^o)$ corresponds to $0^o$ longitude (prime meridian) on the equator.Specifically, there is one class of satellite node \code{Class Node/SatNode},to which one of three types of \code{Position} objects may be attached.  Each \code{SatNode} and \code{Position} object is a split OTcl/C++ object,but most of the code resides in C++.  The following types of position objects exist: \begin{itemize}\item \code{Position/Sat/Term} A terminal is specified by its latitude andlongitude.  Latitude ranges from $[-90, 90]$ and longitude ranges from$[-180, 180]$, with negative values corresponding to south and west, respectively.  As simulation time evolves, the terminals move alongwith the Earth's surface.  The  Simulator instproc \code{satnode} can be used to create a terminal with an attached position object as follows:\begin{program}$ns satnode terminal $lat $lon\end{program}\item \code{Position/Sat/Geo} A geostationary satellite is specified by its longitude above the equator.  As simulation time evolves, the geostationarysatellite moves through the coordinate system with the same orbital periodas that of the Earth's rotation.  The longitude ranges from $[-180,180]$degrees.  The Simulator instproc \code{satnode} can be used to create a geostationary satellite with an attached position object as follows:\begin{program}$ns satnode geo $lon\end{program}\item \code{Position/Sat/Polar} A polar orbiting satellite has a purelycircular orbit along a fixed plane in the coordinate system; the Earthrotates underneath this orbital plane, so there is both an east-west anda north-south component to the track of a polar satellite's footprint onthe Earth's surface.  Strictly speaking, the polar position object canbe used to model the movement of any circular orbit in a fixed plane;  we use the term ``polar'' here because we later use such satellites to model polar-orbiting constellations.Satellite orbits are usually specified by six parameters:  {\em altitude},

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色综合久久综合| 久久久久久久综合色一本| 色哟哟欧美精品| 中文字幕在线播放不卡一区| 亚洲男同性恋视频| 免费视频最近日韩| 懂色av一区二区夜夜嗨| 欧美日韩一区在线观看| 国产精品丝袜黑色高跟| 麻豆传媒一区二区三区| 日本道色综合久久| 国产日韩视频一区二区三区| 一区2区3区在线看| 国产在线不卡一区| 欧美日韩三级在线| 久久国产人妖系列| 欧美精品 国产精品| 亚洲日本中文字幕区| 国产成a人无v码亚洲福利| 亚洲欧洲www| 制服丝袜亚洲网站| 午夜激情综合网| 日本韩国精品在线| 精久久久久久久久久久| 欧美一区二区私人影院日本| 亚洲久本草在线中文字幕| 成人黄色av电影| 久久久久国产成人精品亚洲午夜| 99精品视频在线播放观看| 欧美激情一区不卡| 成人综合在线网站| 中文字幕不卡的av| 777xxx欧美| 不卡一区在线观看| 免费观看日韩av| 亚洲精品成人少妇| 2024国产精品| 国产裸体歌舞团一区二区| 一区二区在线观看不卡| 欧美大胆一级视频| 麻豆国产精品视频| 亚洲自拍偷拍麻豆| 欧美亚洲综合另类| 天天影视色香欲综合网老头| 国产精品传媒在线| 色婷婷国产精品| 国产精品18久久久久久vr| 8v天堂国产在线一区二区| 99视频超级精品| 一二三四社区欧美黄| 欧美激情一区二区| 欧美精品一区二区在线观看| 成人激情午夜影院| 国产一区二区三区黄视频| 午夜欧美视频在线观看| 一区二区三区四区视频精品免费 | 久久国产生活片100| 一区二区三区四区蜜桃| 日韩毛片在线免费观看| 久久精品视频在线免费观看| 97久久精品人人做人人爽50路| 精久久久久久久久久久| 青草av.久久免费一区| 亚洲国产精品综合小说图片区| 7799精品视频| 欧美另类一区二区三区| 日本久久电影网| 欧美性色黄大片| 欧美午夜一区二区三区| 欧美亚洲愉拍一区二区| 在线观看国产91| 久久99久久久久久久久久久| 视频在线在亚洲| 国产亚洲欧美中文| 精品日韩在线观看| 色婷婷综合久久久久中文| jlzzjlzz亚洲日本少妇| 99久免费精品视频在线观看| 成人sese在线| 91美女在线看| 韩国女主播成人在线| 亚洲另类色综合网站| 玉米视频成人免费看| 一片黄亚洲嫩模| 丝袜美腿亚洲色图| 日韩精品一二三区| 精品一区二区三区视频在线观看| 久久机这里只有精品| 国产一区二区三区久久久| 成人免费视频caoporn| 99久久精品99国产精品| 在线视频中文字幕一区二区| 欧美在线一区二区三区| 制服丝袜亚洲网站| 亚洲精品一区二区精华| 日本一二三四高清不卡| 亚洲另类在线制服丝袜| 日韩国产精品久久久久久亚洲| 国产精品福利一区二区三区| 一区二区三区四区亚洲| 日韩电影一二三区| 国产美女在线观看一区| 91视频在线观看免费| 欧美日韩国产综合一区二区| 91视频国产资源| 欧美日韩免费在线视频| 精品日韩在线一区| 中文字幕日韩欧美一区二区三区| 一区二区三区自拍| 奇米影视一区二区三区| 成人免费黄色大片| 欧美日韩在线三级| 国产三区在线成人av| 亚洲午夜激情av| 韩国精品主播一区二区在线观看 | 亚洲综合无码一区二区| 久久成人麻豆午夜电影| 色琪琪一区二区三区亚洲区| 日韩区在线观看| 欧美久久一区二区| 久久久久亚洲综合| 亚洲一级片在线观看| 国产麻豆精品一区二区| 91福利在线导航| 国产片一区二区| 偷拍一区二区三区| 成人av资源站| 日韩欧美精品在线视频| 亚洲女爱视频在线| 国产又黄又大久久| 欧美日韩精品三区| 亚洲视频一二区| 国产一区二区在线观看视频| 欧美日韩和欧美的一区二区| 中文字幕一区二区三区蜜月| 精品在线你懂的| 欧美日韩第一区日日骚| 中文字幕永久在线不卡| 国产在线精品一区在线观看麻豆| 欧美日韩精品三区| 一区免费观看视频| 国产精品亚洲一区二区三区妖精 | 久久综合久久久久88| 亚洲一二三四久久| thepron国产精品| 国产视频一区二区在线| 另类人妖一区二区av| 欧美日韩国产首页| 夜夜操天天操亚洲| 91在线观看视频| 中文字幕欧美区| 国产高清视频一区| 久久一区二区视频| 另类小说综合欧美亚洲| 欧美一二三区在线| 日韩黄色小视频| 精品视频一区二区不卡| 亚洲精品免费视频| 不卡的电影网站| 国产精品久久影院| 成人黄色片在线观看| 国产亚洲一区二区三区在线观看| 久久成人免费日本黄色| 欧美videossexotv100| 日本亚洲三级在线| 日韩一区二区免费电影| 免费欧美在线视频| 欧美大尺度电影在线| 精品在线免费观看| 精品久久久久久最新网址| 美女视频黄 久久| 欧美zozo另类异族| 狠狠色2019综合网| 2020国产精品自拍| 国产精品亚洲а∨天堂免在线| 久久午夜羞羞影院免费观看| 国产老妇另类xxxxx| 国产三级一区二区| 99riav久久精品riav| 亚洲自拍偷拍网站| 91麻豆精品国产91久久久久久 | 国产91丝袜在线观看| 国产精品久久久久婷婷| 91香蕉视频污| 天天综合网天天综合色| 欧美xxxxx裸体时装秀| 国产一区二区伦理片| 国产精品私人自拍| 欧美中文字幕一区二区三区| 天堂一区二区在线免费观看| 日韩免费性生活视频播放| 高清在线不卡av| 一区二区三区在线高清| 欧美一区二区三区在线观看 | 成人免费在线视频| 欧美体内she精高潮| 国模少妇一区二区三区| 国产精品免费aⅴ片在线观看| 欧洲精品中文字幕| 久久66热偷产精品|