亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? dd2.m

?? 卡爾曼濾波
?? M
字號:
function [xhat_data,Smat]=dd2(kalmfilex,kalmfiley,xbar,P0,q,r,u,y,timeidx,optpar)
% DD2
%   This function performs a DD2-filtering; a state estimation for nonlinear 
%   systems that is based on second-order polynomial approximations of the 
%   nonlinear mappings. The approximations are derived by using a 
%   multidimensional extension of Stirling's interpolation formula. 
%   The model of the nonlinear system must be specified in the form:
%               x(k+1) = f[x(k),u(k),v(k)]
%               y(k)   = g[x(k),w(k)]
%   where 'x' is the state vector, 'u' is a possible input, and 'v' and 'w'
%   are (white) noise sources.
%
% Call
%   [xhat,Smat]=dd2(xfile,yfile,x0,P0,q,r,u,y,timeidx,optpar) 
%
% Input
%   xfile   - File containing the state equations.
%   yfile   - File containing the output equations.
%   x0      - Initial state vector.
%   P0      - Initial covariance matrix (symmetric, nonnegative definite).
%   q,r     - Covariance matrices for v and w, respectively.
%   u       - Input signal. Dimension is [samples x inputs].
%             Use [] if there are no inputs.
%   y       - Output signal. Dimension is [observations x outputs].
%   timeidx - Vector containing sample numbers for the availability of
%             the observations in 'y'. The vector has same length as 'y'.
%   optpar  - Data structure containing optional parameters:
%             .A:     State transition matrix.
%             .C:     Output sensitivity matrix.
%             .F:     Process noise coupling matrix.
%             .G:     Measurement noise coupling matrix.
%             .init : Initial parameters for 'xfile' and 'yfile'
%                     (use an arbitrary format).
%
% Output
%   xhat    - State estimates. Dimension is [samples+1 x states].
%   Smat    - Matrix where each row contains elements of (the upper triangular
%             part of) the Cholesky factor of the covariance matrix. The 
%             dimension is [samples+1 x 0.5*states*(states+1)]. The individual
%             covariance matrices can later be extracted with SMAT2COV.
%
%  The user must write the two m-functions 'xfile' and 'yfile' containing the
%  state update and the output equation. The function containing the state
%  update should take three arguments:
%       function x=my_xfile(x,u,v)
%
%  while the function containing the output equation should take two
%  arguments:
%       function y=my_yfile(x,w)
%
%  In both cases, an initialization of constant parameters can be 
%  made using the parameter 'optpar.init'. This parameter is passed through
%  x if the functions are called with only one parameter.
%
%  Literature:
%     M. Norgaard, N.K. Poulsen, O. Ravn: "New Developments in State
%     Estimation for Nonlinear Systems", Automatica, (36:11), Nov. 2000,
%     pp. 1627-1638.
%
% Written by: Magnus Norgaard
% LastEditDate: Nov. 9, 2001 

% >>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<
h2    = 3;                 % Squared divided-difference step size
h     = sqrt(h2);          % Divided difference step-size
scal1 = 0.5/h;             % A convenient scaling factor
scal2 = sqrt((h2-1)/(4*h2*h2)); % Another scaling factor
if isempty(u),             % No inputs
  nu = 0; samples = timeidx(end); uk1 = [];
else
  [samples,nu] = size(u);  % # of samples and inputs
end
nx           = size(P0,1); % # of states
if isempty(xbar),          % Set to x0=0 if not specified 
  xbar = zeros(nx,1);
elseif length(xbar)~=nx,
  error('Dimension mismatch between x0 and P0');
end
ny    = size(y,2);         % # of outputs
nv    = size(q,1);         % # of process noise sources
nw    = size(r,1);         % # of measurement noise sources
[v,d] = eig(P0);           % Square root of initial state covariance
Sxbar = triag(real(v*sqrt(d)));
[v,d] = eig(q);            % Square root of process noise covariance
Sv    = real(v*sqrt(d));
hSv   = h*Sv;
[v,d] = eig(r);
Sw    = real(v*sqrt(d));   % Square root of measurement noise cov.
hSw   = h*Sw;
SxxSxv = zeros(nx,2*(nx+nv));  % Allocate compund matrix consisting of Sxx and Syv 
SyxSyw = zeros(ny,2*(nx+nw));  % Allocate compund matrix consisting of Syx and Syw
xhat_data = zeros(samples+1,nx); % Matrix for storing state estimates
Smat      = zeros(samples+1,0.5*nx*(nx+1)); % Matrix for storing cov. matrices
[I,J]     = find(triu(reshape(1:nx*nx,nx,nx))'); % Index to elem. in Sx
sidx      = sub2ind([nx nx],J,I); 
yidx  = 1;                 % Index into y-vector 
vmean = zeros(nv,1);       % Mean of process noise
wmean = zeros(nw,1);       % Mean of measurement noise

% ----- Initialize state+output equations and linearization -----
if nargin<10,              % No optional parameters passed
   optpar = [];
end
if isfield(optpar,'init')  % Parameters for m-functions
   initpar = optpar.init;
else
   initpar = [];
end

Aflag = 0; Cflag = 0; Fflag = 0; Gflag = 0;
nxnv2 = nx+nv;
nxnw2 = nx+nw;
if isfield(optpar,'A'),    % Deterministic dynamic model is linear
   A = optpar.A;
   if(size(A,1)~=nx | size(A,2)~=nx)
      error('"optpar.A" has the wrong dimension');
   end
   nxnv2 = nxnv2-nx;
   Aflag = 1;
end
if isfield(optpar,'F'),    % Linear process noise model in state equation
   F = optpar.F;
   if(size(F,1)~=nx | size(F,2)~=nv)
      error('"optpar.F" has the wrong dimension');
   end
   SxxSxv(:,nx+1:nx+nv) = F*Sv;
   nxnv2 = nxnv2-nv;
   Fflag = 1;
end
if isfield(optpar,'C'),    % Deterministic observation model linear
   C = optpar.C;
   if(size(C,1)~=ny | size(C,2)~=nx)
      error('"optpar.C" has the wrong dimension');
   end
   nxnw2 = nxnw2-nx;
   Cflag = 1;
end
if isfield(optpar,'G'),    % Linear observation noise model
   G = optpar.G;
   if(size(G,1)~=ny | size(G,2)~=nw)
      error('"optpar.G" has the wrong dimension');
   end
   SyxSyw(:,nx+1:nx+nw) = G*Sw;
   nxnw2 = nxnw2-nw;
   Gflag = 1;
end

% Index to location of Sxv2 and Syw2 in SxxSxv and SyxSyw matrices
if Cflag,
	idx_syw2 = nx+nw;
else
	idx_syw2 = 2*nx+nw;
end
if Aflag,
	idx_sxv2 = nx+nv;
else
	idx_sxv2 = 2*nx+nv;
end
SxxSxv = [SxxSxv zeros(nx,nxnv2)];
SyxSyw = [SyxSyw zeros(ny,nxnw2)];
feval(kalmfilex,initpar);  % State equation
feval(kalmfiley,initpar);  % Output equation
counter = 0;               % Counts the progress of the filtering
waithandle=waitbar(0,'Filtering in progress');  % Initialize waitbar


% >>>>>>>>>>>>>>>>>>>>>>>>>>>> FILTERING <<<<<<<<<<<<<<<<<<<<<<<<<<<
for k=0:samples,

  % --- Measurement update (a posteriori update) ---
  y0 = feval(kalmfiley,xbar,wmean);
  if (k<=timeidx(end) & timeidx(yidx)==k),
    ybar = ((h2-nxnw2)/h2)*y0;
    if Cflag,
       SyxSyw(:,1:nx) = C*Sxbar;
    else
       kx2 = nx+nw;
       for kx=1:nx,
          syp = feval(kalmfiley,xbar+h*Sxbar(:,kx),wmean);
          sym = feval(kalmfiley,xbar-h*Sxbar(:,kx),wmean);
          SyxSyw(:,kx)  = scal1*(syp-sym);
          SyxSyw(:,kx2+kx) = scal2*(syp+sym-2*y0);
          ybar = ybar + (syp+sym)/(2*h2);    
       end
    end
    if ~Gflag,
       for kw=1:nw,
          swp = feval(kalmfiley,xbar,hSw(:,kw));
          swm = feval(kalmfiley,xbar,-hSw(:,kw));
          SyxSyw(:,nx+kw)       = scal1*(swp-swm);
          SyxSyw(:,idx_syw2+kw) = scal2*(swp+swm-2*y0);
          ybar = ybar + (swp+swm)/(2*h2);          
       end
    end
    
    % Cholesky factor of a'posteriori output estimation error covariance
    Sy   = triag(SyxSyw);
    K    = (Sxbar*SyxSyw(:,1:nx)')/(Sy*Sy');
    xhat = xbar + K*(y(yidx,:)'-ybar);  % State estimate

    % Cholesky factor of a'posteriori estimation error covariance
    Sx   = triag([Sxbar-K*SyxSyw(:,1:nx) K*SyxSyw(:,nx+1:end)]);
    yidx = yidx + 1; 

  % No observations available at this sampling instant
  else
    xhat = xbar;                       % Copy a priori state estimate
    Sx   = Sxbar;                      % Copy a priori covariance factor
  end

  % --- Time update (a'priori update) of state and covariance ---
  if k<samples, 
    if nu>0 uk1 = u(k+1,:)'; end
    fxbar = feval(kalmfilex,xhat,uk1,vmean);
    xbar = ((h2-nxnv2)/h2)*fxbar;
    if Aflag,
        SxxSxv(:,1:nx) = A*Sx;
    else
       kx2 = nx+nv;
       for kx=1:nx,
          sxp = feval(kalmfilex,xhat+h*Sx(:,kx),uk1,vmean);
          sxm = feval(kalmfilex,xhat-h*Sx(:,kx),uk1,vmean);
          SxxSxv(:,kx) = scal1*(sxp-sxm);
          SxxSxv(:,kx2+kx) = scal2*(sxp+sxm-2*fxbar);
          xbar            =  xbar + (sxp+sxm)/(2*h2);
       end
    end
    if ~Fflag,
       for kv=1:nv,
          svp = feval(kalmfilex,xhat,uk1,hSv(:,kv));
          svm = feval(kalmfilex,xhat,uk1,-hSv(:,kv));
          SxxSxv(:,nx+kv)       = scal1*(svp-svm);
          SxxSxv(:,idx_sxv2+kv) = scal2*(svp+svm-2*fxbar);
          xbar                  = xbar + (svp+svm)/(2*h2);
       end
    end
    
    % Cholesky factor of a'priori estimation error covariance
    Sxbar = triag(SxxSxv);
  end
  
  % --- Store results ---
  xhat_data(k+1,:) = xhat';
  Smat(k+1,:)      = Sx(sidx)';

  % --- How much longer? ---
  if (counter+0.01<= k/samples),
     counter = k/samples;
     waitbar(k/samples,waithandle);
  end
end
close(waithandle);

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲成人av一区| 不卡电影一区二区三区| 亚洲精品日韩专区silk| 国产精品成人一区二区艾草 | 成人av在线资源网| 国产91丝袜在线播放0| 国产成人日日夜夜| 国产精品夜夜嗨| 国内精品国产成人国产三级粉色| 强制捆绑调教一区二区| 日本中文在线一区| 日韩高清电影一区| 男女男精品网站| 久久精品二区亚洲w码| 久久国产精品色| 久久www免费人成看片高清| 毛片av一区二区| 黑人精品欧美一区二区蜜桃 | 91精品国产综合久久香蕉的特点| 7878成人国产在线观看| 欧美久久久久免费| 日韩欧美综合在线| 精品va天堂亚洲国产| 久久久精品欧美丰满| 国产女同性恋一区二区| 中文字幕中文字幕一区| 亚洲激情网站免费观看| 视频在线在亚洲| 久久超碰97中文字幕| 粉嫩av一区二区三区在线播放| 91在线无精精品入口| 欧美亚洲精品一区| 精品少妇一区二区三区在线播放| 久久九九全国免费| 亚洲天堂2016| 天天色天天爱天天射综合| 麻豆精品国产传媒mv男同| 粉嫩一区二区三区性色av| 91小视频免费看| 69久久夜色精品国产69蝌蚪网| 精品久久久久一区| 亚洲欧美自拍偷拍| 日韩电影一二三区| 国产成人精品综合在线观看| 色噜噜狠狠色综合中国| 欧美一区二区成人| 国产精品全国免费观看高清 | 性做久久久久久| 国产一区二区精品久久99| 91在线观看地址| 91精品国产高清一区二区三区 | 中文字幕亚洲区| 午夜精品久久久久久久久| 国产酒店精品激情| 色综合 综合色| 精品日韩一区二区| 亚洲日本在线天堂| 久久国产精品99精品国产| 97精品久久久午夜一区二区三区 | 亚洲二区在线观看| 国产麻豆精品久久一二三| 欧美亚洲国产一区二区三区| 精品福利视频一区二区三区| 一区二区三区影院| 国产成人综合亚洲91猫咪| 欧美日韩亚洲综合在线 欧美亚洲特黄一级 | 三级影片在线观看欧美日韩一区二区| 国产精品一区二区黑丝| 久久久高清一区二区三区| 亚洲影院理伦片| 国产精品一区二区不卡| 69av一区二区三区| 日韩一区在线看| 国产另类ts人妖一区二区| 欧美精品xxxxbbbb| 亚洲乱码中文字幕| 国产精品自拍毛片| 日韩一级完整毛片| 亚洲精品少妇30p| 成人黄色国产精品网站大全在线免费观看| 欧美一区二区在线免费观看| 一区二区三区国产豹纹内裤在线| 国产福利一区在线观看| 日韩免费一区二区| 天天综合网天天综合色| 日本精品视频一区二区| 国产精品国产三级国产三级人妇| 国产综合色视频| 日韩午夜在线观看| 首页国产丝袜综合| 欧美在线免费视屏| 亚洲黄色尤物视频| 99精品视频一区| 国产精品免费av| 国产馆精品极品| 久久久久久久综合日本| 国产一区二区h| 欧美大白屁股肥臀xxxxxx| 日韩主播视频在线| 欧美日韩高清一区二区不卡| 亚洲国产精品尤物yw在线观看| 色婷婷综合久久久中文一区二区 | 国产亲近乱来精品视频| 狠狠色综合色综合网络| 欧美大胆一级视频| 经典一区二区三区| 精品成人在线观看| 久久国产精品99精品国产 | 久久精品视频一区二区| 国产一区二区三区蝌蚪| 国产日韩亚洲欧美综合| 国产福利一区二区三区在线视频| 国产视频一区二区在线| 国产不卡高清在线观看视频| 国产精品二区一区二区aⅴ污介绍| 丁香五精品蜜臀久久久久99网站 | 美女www一区二区| 精品蜜桃在线看| 国产综合久久久久久鬼色| 精品1区2区在线观看| 国产精品一二二区| 国产精品久久久久久久岛一牛影视| 成人免费视频视频在线观看免费| 亚洲视频免费在线| 欧美午夜精品一区二区三区| 婷婷一区二区三区| 日韩免费在线观看| 粉嫩久久99精品久久久久久夜| 亚洲天堂精品在线观看| 欧美三级欧美一级| 久久草av在线| 国产精品美女www爽爽爽| 91麻豆精品视频| av亚洲精华国产精华精华| 亚洲色欲色欲www| 欧美视频在线一区二区三区| 青青草91视频| 国产精品视频在线看| 91麻豆精品在线观看| 日韩福利视频导航| 国产亚洲精品aa| 91论坛在线播放| 麻豆精品一区二区av白丝在线| 国产亚洲一区二区三区在线观看| av资源站一区| 日韩精品亚洲一区| 久久精品人人做人人综合| 色系网站成人免费| 久久99国产精品麻豆| 中文字幕亚洲综合久久菠萝蜜| 欧美日韩国产123区| 国产东北露脸精品视频| 亚洲曰韩产成在线| 26uuu另类欧美| 在线免费精品视频| 国产又黄又大久久| 一区二区日韩电影| xnxx国产精品| 在线日韩国产精品| 国产福利精品一区二区| 天天爽夜夜爽夜夜爽精品视频| 国产午夜精品一区二区| 欧美色手机在线观看| 国产一区不卡在线| 午夜伦欧美伦电影理论片| 中文字幕第一页久久| 欧美一区三区四区| 色婷婷久久99综合精品jk白丝| 精品综合免费视频观看| 亚洲精品水蜜桃| 久久久99免费| 欧美电影在哪看比较好| 成+人+亚洲+综合天堂| 青青草91视频| 亚洲电影你懂得| 日韩理论在线观看| 久久免费午夜影院| 制服丝袜国产精品| 在线免费观看日本一区| 成人一区在线看| 九九九久久久精品| 午夜一区二区三区视频| 国产精品超碰97尤物18| 精品国产不卡一区二区三区| 欧美视频你懂的| 91欧美一区二区| 国产成人av一区二区三区在线 | 一区二区三区在线播放| 国产精品久久精品日日| 久久久久久久久久久99999| 欧美一区日韩一区| 欧美久久久久久久久久| 色婷婷国产精品综合在线观看| 高清不卡一区二区在线| 激情欧美一区二区| 狠狠狠色丁香婷婷综合久久五月| 日本大胆欧美人术艺术动态| 日日夜夜免费精品| 亚洲国产cao| 亚洲午夜日本在线观看|