亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? quickprop.java

?? BP_GA_PSO是利用JAVA開發(fā)的一個小程序
?? JAVA
字號:
/*
	Copyright 2006, 2007 Brian Greer

	This file is part of the Java NN Trainer.

	Java NN Trainer is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	Java NN Trainer is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with Java NN Trainer; if not, write to the Free Software
	Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/

package algorithms;

public class QuickProp extends Trainer{
	public static final double DEFAULT_MOMENTUM = 0.9;

	private double momentum = DEFAULT_MOMENTUM; // [0.0-1.0]

	// Inside thresh, do grad descent; outside, jump.
	private double modeSwitchThreshold = 0.0;
	// Don't jump more than this times last step
	private double maxFactor = 1.75;
	private double shrinkFactor = maxFactor / (1.0 + maxFactor);
	// divide epsilon by fan-in before use
	private boolean splitEpsilon = false; //true;
	// For grad descent if last step was (almost) 0
	private double epsilon = 0.55; /* 1.0 */
	// Weight decay
	private double decay = -0.0001;

	private double [][] prevInSlopes = null;
	private double [][] inSlopes = null;
	private double [][] inDeltaWeights = null;

	private double [][] prevOutSlopes = null;
	private double [][] outSlopes = null;
	private double [][] outDeltaWeights = null;

	private NeuralNetwork nn = null;

	public QuickProp(NeuralNetwork nn, double [][] inputs, double [][] targets, double minError){
		super(nn.getNumHidden(), inputs, targets, minError);
		this.nn = nn;
	}

	public QuickProp(int numHidden, double [][] inputs, double [][] targets, double minError){
		super(numHidden, inputs, targets, minError);
		nn = new NeuralNetwork(numInput, numHidden, numOutput);
	}

	public int getType(){
		return Trainer.QUICKPROP;
	}

	public void setMomentum(double momentum){
		this.momentum = momentum;
	}

	public void run(){
		broadcastBegin();

		prevInSlopes = new double[numInput][numHidden];
		inSlopes = new double[numInput][numHidden];
		inDeltaWeights = new double[numInput][numHidden];
		for(int i = 0; i < numInput; i++)
			for(int j = 0; j < numHidden; j++)
				inDeltaWeights[i][j] = prevInSlopes[i][j] = inSlopes[i][j] = 0.0;

		prevOutSlopes = new double[numHidden][numOutput];
		outSlopes = new double[numHidden][numOutput];
		outDeltaWeights = new double[numHidden][numOutput];
		for(int i = 0; i < numHidden; i++)
			for(int j = 0; j < numOutput; j++)
				outDeltaWeights[i][j] = prevOutSlopes[i][j] = outSlopes[i][j] = 0.0;

		double fitness = 1000.0;

		while(fitness > minError && isRunning){
			numGenerations++;

			updateSlopes(inSlopes, prevInSlopes, nn.getInWeights());
			updateSlopes(outSlopes, prevOutSlopes, nn.getOutWeights());

			fitness = 0.0;
			for(int i = 0; i < numPatterns; i++)
				fitness += adjustWeights(inputs[i], targets[i]);
			fitness /= numPatterns;

			nn.setFitness(fitness);

			broadcastGenerationComplete(nn);
		}

		broadcastEnd();
	}

	private void updateSlopes(double [][] slopes, double [][] prevSlopes, double [][] weights){
		int size1 = slopes.length;
		int size2 = slopes[0].length;
		for(int i = 0; i < size1; i++){
			for(int j = 0; j < size2; j++){
				prevSlopes[i][j] = slopes[i][j];
				slopes[i][j] = decay * weights[i][j];
			}
		}
	}

	private double adjustWeights(double [] inputs, double [] targets){
		double [] hidden = new double[numHidden];
		double [] outputs = new double[numOutput];

		nn.activate(inputs, hidden, outputs);

		double [] outError = new double[numOutput];

		for(int i = 0; i < numOutput; i++)
			outError[i] = (targets[i] - outputs[i]) * outputs[i] * (1.0 - outputs[i]);

		double [][] outWeights = nn.getOutWeights();
		double [] hiddenError = new double[numHidden];

		for(int i = 0; i < numHidden; i++){
			double sum = 0.0;
			for(int j = 0; j < numOutput; j++)
				sum += outError[j] * outWeights[i][j];
			hiddenError[i] = sum * hidden[i] * (1.0 - hidden[i]);
		}

		for(int i = 0; i < numInput; i++)
			for(int j = 0; j < numHidden; j++)
				inSlopes[i][j] += hiddenError[j] * hidden[j];

		for(int i = 0; i < numHidden; i++)
			for(int j = 0; j < numOutput; j++)
				outSlopes[i][j] += outError[j] * outputs[j];

		takeStep(nn.getInWeights(), inDeltaWeights, inSlopes, prevInSlopes);
		takeStep(outWeights, outDeltaWeights, outSlopes, prevOutSlopes);

		return NeuralNetwork.sumSquaredError(outputs, targets);
	}

	private void takeStep(double [][] weights, double [][] deltaWeights, double [][] slopes, double [][] prevSlopes){
		int size1 = weights.length;
		int size2 = weights[0].length;

		for(int i = 0; i < size1; i++){
			for(int j = 0; j < size2; j++){
				double nextStep = 0.0;

				if(deltaWeights[i][j] > modeSwitchThreshold){
					if(slopes[i][j] > 0.0)
						nextStep = (splitEpsilon ? ((epsilon * slopes[i][j]) / size1)
						                         : (epsilon * slopes[i][j]));

					if(slopes[i][j] > (shrinkFactor * prevSlopes[i][j]))
						nextStep += maxFactor * deltaWeights[i][j];
					else
						nextStep += (slopes[i][j] / (prevSlopes[i][j] - slopes[i][j])) * deltaWeights[i][j];
				}
				else if(deltaWeights[i][j] < -modeSwitchThreshold){
					if(slopes[i][j] < 0.0)
						nextStep = (splitEpsilon ? ((epsilon * slopes[i][j]) / size1)
						                         : (epsilon * slopes[i][j]));

					if(slopes[i][j] < (shrinkFactor * prevSlopes[i][j]))
						nextStep += maxFactor * deltaWeights[i][j];
					else
						nextStep += (slopes[i][j] / (prevSlopes[i][j] - slopes[i][j])) * deltaWeights[i][j];
				}
				else{
					nextStep = (splitEpsilon ? ((epsilon * slopes[i][j]) / size1)
					                         : (epsilon * slopes[i][j]))
					           + (momentum * deltaWeights[i][j]);
				}

//				System.out.print(slopes[i][j] + "," + nextStep);
//				System.out.print("," + deltaWeights[i][j] + "," + weights[i][j]);
				deltaWeights[i][j] = nextStep;
				weights[i][j] += nextStep;
//				System.out.print("," + deltaWeights[i][j] + "," + weights[i][j]);
//				System.out.println("");
			}
		}
	}
}

// vim:noet:ts=3:sw=3

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
av亚洲精华国产精华精华| 亚洲成a人v欧美综合天堂| 国产自产v一区二区三区c| 日韩欧美一二三四区| 麻豆精品蜜桃视频网站| 精品第一国产综合精品aⅴ| 精品一区二区三区在线播放 | 欧美另类高清zo欧美| 亚洲电影在线播放| 5月丁香婷婷综合| 精品一区二区免费| 国产精品天天摸av网| 99视频一区二区| 亚洲国产日韩a在线播放| 91精品一区二区三区久久久久久| 日韩av网站免费在线| 精品国产一区a| av电影在线观看一区| 玉足女爽爽91| 日韩欧美不卡在线观看视频| 国产一区欧美二区| 亚洲乱码中文字幕综合| 欧美一区二区三区不卡| 国产传媒一区在线| 亚洲一区二区在线视频| 日韩一区二区在线播放| 国产91色综合久久免费分享| 亚洲欧美日韩系列| 精品剧情v国产在线观看在线| 成人免费视频视频在线观看免费| 亚洲综合久久久久| 久久新电视剧免费观看| 91精品福利在线| 国产一区欧美一区| 亚洲国产日韩综合久久精品| 精品国产99国产精品| 在线亚洲精品福利网址导航| 国产黄色精品视频| 亚洲精品成a人| 久久久美女毛片| 欧美日韩在线三区| 国产高清亚洲一区| 亚洲bt欧美bt精品| 国产精品区一区二区三区| 欧美精品一级二级| 91美女视频网站| 国产激情偷乱视频一区二区三区| 五月天网站亚洲| 亚洲人成伊人成综合网小说| 2021久久国产精品不只是精品| 欧美伊人久久久久久久久影院 | 久久夜色精品国产欧美乱极品| 91在线无精精品入口| 激情综合色播五月| 石原莉奈一区二区三区在线观看| 国产精品久久久久久一区二区三区| 91精品国产91久久久久久最新毛片| 色婷婷综合五月| 成人性生交大片免费看在线播放| 毛片一区二区三区| 亚洲成人免费在线| 亚洲一区二区三区自拍| 中文字幕日韩av资源站| 久久九九国产精品| 精品国产区一区| 日韩欧美精品三级| 日韩欧美一级片| 日韩欧美在线1卡| 91精品国产欧美日韩| 欧美系列日韩一区| 欧美在线视频全部完| 北条麻妃国产九九精品视频| 福利91精品一区二区三区| 国产美女av一区二区三区| 美女视频网站久久| 捆绑变态av一区二区三区| 免费在线观看成人| 成人av综合一区| 成人免费高清在线观看| 国产高清不卡二三区| 国内不卡的二区三区中文字幕| 久久草av在线| 国产乱码一区二区三区| 国产精品一区二区在线观看网站| 国产精品一区二区在线观看不卡 | 国产精品一卡二卡在线观看| 精品亚洲国产成人av制服丝袜| 久久精品国产亚洲一区二区三区 | 91麻豆精品国产91久久久更新时间| 精品视频资源站| 欧亚一区二区三区| 91麻豆精品国产91久久久久久 | 日韩欧美亚洲国产另类| 欧美成人video| 国产婷婷精品av在线| 亚洲欧洲成人精品av97| 亚洲韩国精品一区| 免费日韩伦理电影| 国产精品夜夜嗨| 99热国产精品| 欧美日韩高清一区| 日韩欧美电影一二三| 国产日韩亚洲欧美综合| 亚洲精品自拍动漫在线| 午夜电影一区二区三区| 黄页视频在线91| 97国产一区二区| 777xxx欧美| 欧美国产激情二区三区 | 欧美日韩中文字幕一区| 欧美一区二区久久| 国产精品色婷婷| 亚洲国产va精品久久久不卡综合| 久久超碰97中文字幕| 成人三级伦理片| 在线播放日韩导航| 国产精品无遮挡| 日本成人在线不卡视频| 粉嫩嫩av羞羞动漫久久久| 欧美日韩免费不卡视频一区二区三区| 日韩免费成人网| 一级中文字幕一区二区| 国产在线国偷精品免费看| 色妞www精品视频| 欧美精品一区二区三区高清aⅴ | 亚洲色图丝袜美腿| 99精品黄色片免费大全| 666欧美在线视频| 亚洲色欲色欲www| 韩国中文字幕2020精品| 色婷婷亚洲综合| 国产欧美一区二区三区在线看蜜臀 | 久久亚洲捆绑美女| 亚洲超碰精品一区二区| 国产精品资源在线观看| 欧美日韩免费电影| 综合自拍亚洲综合图不卡区| 免费观看30秒视频久久| 色系网站成人免费| 国产精品每日更新在线播放网址| 日韩成人精品在线观看| 在线亚洲高清视频| 国产精品福利一区| 国产激情视频一区二区在线观看 | 日韩毛片精品高清免费| 国产资源精品在线观看| 69成人精品免费视频| 一区二区三区在线观看视频| 国产成人aaaa| 久久久久久夜精品精品免费| 日韩综合在线视频| 欧美日韩五月天| 亚洲精品视频一区| 99久久免费视频.com| 国产调教视频一区| 国产一区二区视频在线| 欧美一级欧美三级| 青青草国产成人av片免费| 欧美日韩国产片| 亚洲午夜激情网页| 欧美日韩亚洲综合一区二区三区 | 久久精品日产第一区二区三区高清版 | 国产午夜精品美女毛片视频| 久久se精品一区二区| 日韩亚洲欧美在线| 青青草国产精品亚洲专区无| 欧美猛男男办公室激情| 偷拍自拍另类欧美| 51精品久久久久久久蜜臀| 日韩电影在线观看网站| 欧美精品一二三| 日韩国产精品久久久| 9191久久久久久久久久久| 日韩激情一二三区| 日韩西西人体444www| 看国产成人h片视频| 精品久久久久久久久久久久包黑料| 日本成人在线网站| 亚洲国产日韩a在线播放性色| 日本大香伊一区二区三区| 亚洲精品视频自拍| 欧美视频在线一区| 日本vs亚洲vs韩国一区三区二区| 欧美一区二区在线不卡| 精品一区二区三区的国产在线播放| 精品欧美乱码久久久久久1区2区| 久久成人精品无人区| 国产欧美一区二区精品性| www.亚洲国产| 午夜视频久久久久久| 日韩欧美国产综合| 国产综合一区二区| 自拍偷拍欧美激情| 欧美片在线播放| 国产原创一区二区三区| 中文字幕在线不卡一区二区三区| 色综合久久88色综合天天免费| 午夜电影网一区| 久久夜色精品国产噜噜av| 99精品欧美一区二区三区小说|