?? montecarlo_gold.cpp
字號:
/*
* Copyright 1993-2007 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO USER:
*
* This source code is subject to NVIDIA ownership rights under U.S. and
* international Copyright laws. Users and possessors of this source code
* are hereby granted a nonexclusive, royalty-free license to use this code
* in individual and commercial software.
*
* NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
* CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR
* IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
* OR PERFORMANCE OF THIS SOURCE CODE.
*
* U.S. Government End Users. This source code is a "commercial item" as
* that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of
* "commercial computer software" and "commercial computer software
* documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995)
* and is provided to the U.S. Government only as a commercial end item.
* Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
* 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the
* source code with only those rights set forth herein.
*
* Any use of this source code in individual and commercial software must
* include, in the user documentation and internal comments to the code,
* the above Disclaimer and U.S. Government End Users Notice.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
////////////////////////////////////////////////////////////////////////////////
// Common types
////////////////////////////////////////////////////////////////////////////////
#include "MonteCarlo_common.h"
////////////////////////////////////////////////////////////////////////////////
// Black-Scholes formula for Monte Carlo results validation
////////////////////////////////////////////////////////////////////////////////
#define A1 0.31938153
#define A2 -0.356563782
#define A3 1.781477937
#define A4 -1.821255978
#define A5 1.330274429
#define RSQRT2PI 0.39894228040143267793994605993438
//Polynomial approxiamtion of
//cumulative normal distribution function
double CND(double d){
double
K = 1.0 / (1.0 + 0.2316419 * fabs(d));
double
cnd = RSQRT2PI * exp(- 0.5 * d * d) *
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))));
if(d > 0)
cnd = 1.0 - cnd;
return cnd;
}
//Black-Scholes formula for call value
extern "C" void BlackScholesCall(
float& callValue,
TOptionData optionData
){
double S = optionData.S;
double X = optionData.X;
double T = optionData.T;
double R = optionData.R;
double V = optionData.V;
double sqrtT = sqrt(T);
double d1 = (log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT);
double d2 = d1 - V * sqrtT;
double CNDD1 = CND(d1);
double CNDD2 = CND(d2);
double expRT = exp(- R * T);
callValue = (float)(S * CNDD1 - X * expRT * CNDD2);
}
////////////////////////////////////////////////////////////////////////////////
// Moro's inverse Cumulative Normal Distribution function approximation
////////////////////////////////////////////////////////////////////////////////
extern "C" double MoroInvCND(double P){
const double a1 = 2.50662823884;
const double a2 = -18.61500062529;
const double a3 = 41.39119773534;
const double a4 = -25.44106049637;
const double b1 = -8.4735109309;
const double b2 = 23.08336743743;
const double b3 = -21.06224101826;
const double b4 = 3.13082909833;
const double c1 = 0.337475482272615;
const double c2 = 0.976169019091719;
const double c3 = 0.160797971491821;
const double c4 = 2.76438810333863E-02;
const double c5 = 3.8405729373609E-03;
const double c6 = 3.951896511919E-04;
const double c7 = 3.21767881768E-05;
const double c8 = 2.888167364E-07;
const double c9 = 3.960315187E-07;
double y, z;
if(P <= 0 || P >= 1.0){
printf("MoroInvCND(): bad parameter\n");
}
y = P - 0.5;
if(fabs(y) < 0.42){
z = y * y;
z = y * (((a4 * z + a3) * z + a2) * z + a1) / ((((b4 * z + b3) * z + b2) * z + b1) * z + 1);
}else{
if(y > 0)
z = log(-log(1.0 - P));
else
z = log(-log(P));
z = c1 + z * (c2 + z * (c3 + z * (c4 + z * (c5 + z * (c6 + z * (c7 + z * (c8 + z * c9)))))));
if(y < 0) z = -z;
}
return z;
}
extern "C" double NormalDistribution(unsigned int i, unsigned int pathN){
double p = (double)(i + 1) / (double)(pathN + 1);
return MoroInvCND(p);
}
////////////////////////////////////////////////////////////////////////////////
// CPU Monte Carlo
////////////////////////////////////////////////////////////////////////////////
static double endCallValue(double S, double X, double r, double MuByT, double VBySqrtT){
double callValue = S * exp(MuByT + VBySqrtT * r) - X;
return (callValue > 0) ? callValue : 0;
}
extern "C" void MonteCarloCPU(
TOptionValue& callValue,
TOptionData optionData,
float *h_Samples,
int pathN
){
const double S = optionData.S;
const double X = optionData.X;
const double T = optionData.T;
const double R = optionData.R;
const double V = optionData.V;
const double MuByT = (R - 0.5 * V * V) * T;
const double VBySqrtT = V * sqrt(T);
double sum = 0, sum2 = 0;
for(int pos = 0; pos < pathN; pos++){
double sample = (h_Samples != NULL) ? h_Samples[pos] : NormalDistribution(pos, pathN);
double callValue = endCallValue(S, X, sample, MuByT, VBySqrtT);
sum += callValue;
sum2 += callValue * callValue;
}
//Derive average from the total sum and discount by riskfree rate
callValue.Expected = (float)(exp(-R * T) * sum / (double)pathN);
//Standart deviation
double stdDev = sqrt(((double)pathN * sum2 - sum * sum)/ ((double)pathN * (double)(pathN - 1)));
//Confidence width; in 95% of all cases theoretical value lies within these borders
callValue.Confidence = (float)(exp(-R * T) * 1.96 * stdDev / sqrt((double)pathN));
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -