?? mem5.c
字號:
/*** 2007 October 14**** The author disclaims copyright to this source code. In place of** a legal notice, here is a blessing:**** May you do good and not evil.** May you find forgiveness for yourself and forgive others.** May you share freely, never taking more than you give.***************************************************************************** This file contains the C functions that implement a memory** allocation subsystem for use by SQLite. **** This version of the memory allocation subsystem omits all** use of malloc(). The SQLite user supplies a block of memory** before calling sqlite3_initialize() from which allocations** are made and returned by the xMalloc() and xRealloc() ** implementations. Once sqlite3_initialize() has been called,** the amount of memory available to SQLite is fixed and cannot** be changed.**** This version of the memory allocation subsystem is included** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.**** $Id: mem5.c,v 1.19 2008/11/19 16:52:44 danielk1977 Exp $*/#include "sqliteInt.h"/*** This version of the memory allocator is used only when ** SQLITE_ENABLE_MEMSYS5 is defined.*/#ifdef SQLITE_ENABLE_MEMSYS5/*** A minimum allocation is an instance of the following structure.** Larger allocations are an array of these structures where the** size of the array is a power of 2.*/typedef struct Mem5Link Mem5Link;struct Mem5Link { int next; /* Index of next free chunk */ int prev; /* Index of previous free chunk */};/*** Maximum size of any allocation is ((1<<LOGMAX)*mem5.nAtom). Since** mem5.nAtom is always at least 8, this is not really a practical** limitation.*/#define LOGMAX 30/*** Masks used for mem5.aCtrl[] elements.*/#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */#define CTRL_FREE 0x20 /* True if not checked out *//*** All of the static variables used by this module are collected** into a single structure named "mem5". This is to keep the** static variables organized and to reduce namespace pollution** when this module is combined with other in the amalgamation.*/static SQLITE_WSD struct Mem5Global { /* ** Memory available for allocation */ int nAtom; /* Smallest possible allocation in bytes */ int nBlock; /* Number of nAtom sized blocks in zPool */ u8 *zPool; /* ** Mutex to control access to the memory allocation subsystem. */ sqlite3_mutex *mutex; /* ** Performance statistics */ u64 nAlloc; /* Total number of calls to malloc */ u64 totalAlloc; /* Total of all malloc calls - includes internal frag */ u64 totalExcess; /* Total internal fragmentation */ u32 currentOut; /* Current checkout, including internal fragmentation */ u32 currentCount; /* Current number of distinct checkouts */ u32 maxOut; /* Maximum instantaneous currentOut */ u32 maxCount; /* Maximum instantaneous currentCount */ u32 maxRequest; /* Largest allocation (exclusive of internal frag) */ /* ** Lists of free blocks of various sizes. */ int aiFreelist[LOGMAX+1]; /* ** Space for tracking which blocks are checked out and the size ** of each block. One byte per block. */ u8 *aCtrl;} mem5 = { 19804167 };#define mem5 GLOBAL(struct Mem5Global, mem5)#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.nAtom]))/*** Unlink the chunk at mem5.aPool[i] from list it is currently** on. It should be found on mem5.aiFreelist[iLogsize].*/static void memsys5Unlink(int i, int iLogsize){ int next, prev; assert( i>=0 && i<mem5.nBlock ); assert( iLogsize>=0 && iLogsize<=LOGMAX ); assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); next = MEM5LINK(i)->next; prev = MEM5LINK(i)->prev; if( prev<0 ){ mem5.aiFreelist[iLogsize] = next; }else{ MEM5LINK(prev)->next = next; } if( next>=0 ){ MEM5LINK(next)->prev = prev; }}/*** Link the chunk at mem5.aPool[i] so that is on the iLogsize** free list.*/static void memsys5Link(int i, int iLogsize){ int x; assert( sqlite3_mutex_held(mem5.mutex) ); assert( i>=0 && i<mem5.nBlock ); assert( iLogsize>=0 && iLogsize<=LOGMAX ); assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; MEM5LINK(i)->prev = -1; if( x>=0 ){ assert( x<mem5.nBlock ); MEM5LINK(x)->prev = i; } mem5.aiFreelist[iLogsize] = i;}/*** If the STATIC_MEM mutex is not already held, obtain it now. The mutex** will already be held (obtained by code in malloc.c) if** sqlite3GlobalConfig.bMemStat is true.*/static void memsys5Enter(void){ if( sqlite3GlobalConfig.bMemstat==0 && mem5.mutex==0 ){ mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); } sqlite3_mutex_enter(mem5.mutex);}static void memsys5Leave(void){ sqlite3_mutex_leave(mem5.mutex);}/*** Return the size of an outstanding allocation, in bytes. The** size returned omits the 8-byte header overhead. This only** works for chunks that are currently checked out.*/static int memsys5Size(void *p){ int iSize = 0; if( p ){ int i = ((u8 *)p-mem5.zPool)/mem5.nAtom; assert( i>=0 && i<mem5.nBlock ); iSize = mem5.nAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); } return iSize;}/*** Find the first entry on the freelist iLogsize. Unlink that** entry and return its index. */static int memsys5UnlinkFirst(int iLogsize){ int i; int iFirst; assert( iLogsize>=0 && iLogsize<=LOGMAX ); i = iFirst = mem5.aiFreelist[iLogsize]; assert( iFirst>=0 ); while( i>0 ){ if( i<iFirst ) iFirst = i; i = MEM5LINK(i)->next; } memsys5Unlink(iFirst, iLogsize); return iFirst;}/*** Return a block of memory of at least nBytes in size.** Return NULL if unable.*/static void *memsys5MallocUnsafe(int nByte){ int i; /* Index of a mem5.aPool[] slot */ int iBin; /* Index into mem5.aiFreelist[] */ int iFullSz; /* Size of allocation rounded up to power of 2 */ int iLogsize; /* Log2 of iFullSz/POW2_MIN */ /* Keep track of the maximum allocation request. Even unfulfilled ** requests are counted */ if( (u32)nByte>mem5.maxRequest ){ mem5.maxRequest = nByte; } /* Round nByte up to the next valid power of two */ for(iFullSz=mem5.nAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){} /* Make sure mem5.aiFreelist[iLogsize] contains at least one free ** block. If not, then split a block of the next larger power of ** two in order to create a new free block of size iLogsize. */ for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){} if( iBin>LOGMAX ) return 0; i = memsys5UnlinkFirst(iBin); while( iBin>iLogsize ){ int newSize; iBin--; newSize = 1 << iBin; mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; memsys5Link(i+newSize, iBin); } mem5.aCtrl[i] = iLogsize; /* Update allocator performance statistics. */ mem5.nAlloc++; mem5.totalAlloc += iFullSz; mem5.totalExcess += iFullSz - nByte; mem5.currentCount++; mem5.currentOut += iFullSz; if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; /* Return a pointer to the allocated memory. */ return (void*)&mem5.zPool[i*mem5.nAtom];}/*** Free an outstanding memory allocation.*/static void memsys5FreeUnsafe(void *pOld){ u32 size, iLogsize; int iBlock; /* Set iBlock to the index of the block pointed to by pOld in ** the array of mem5.nAtom byte blocks pointed to by mem5.zPool. */ iBlock = ((u8 *)pOld-mem5.zPool)/mem5.nAtom; /* Check that the pointer pOld points to a valid, non-free block. */ assert( iBlock>=0 && iBlock<mem5.nBlock ); assert( ((u8 *)pOld-mem5.zPool)%mem5.nAtom==0 ); assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 ); iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE; size = 1<<iLogsize; assert( iBlock+size-1<(u32)mem5.nBlock ); mem5.aCtrl[iBlock] |= CTRL_FREE; mem5.aCtrl[iBlock+size-1] |= CTRL_FREE; assert( mem5.currentCount>0 ); assert( mem5.currentOut>=(size*mem5.nAtom) ); mem5.currentCount--; mem5.currentOut -= size*mem5.nAtom; assert( mem5.currentOut>0 || mem5.currentCount==0 ); assert( mem5.currentCount>0 || mem5.currentOut==0 ); mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; while( iLogsize<LOGMAX ){ int iBuddy; if( (iBlock>>iLogsize) & 1 ){ iBuddy = iBlock - size; }else{ iBuddy = iBlock + size; } assert( iBuddy>=0 ); if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break; if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; memsys5Unlink(iBuddy, iLogsize); iLogsize++; if( iBuddy<iBlock ){ mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize; mem5.aCtrl[iBlock] = 0; iBlock = iBuddy; }else{ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; mem5.aCtrl[iBuddy] = 0; } size *= 2; } memsys5Link(iBlock, iLogsize);}/*** Allocate nBytes of memory*/static void *memsys5Malloc(int nBytes){ sqlite3_int64 *p = 0; if( nBytes>0 ){ memsys5Enter(); p = memsys5MallocUnsafe(nBytes); memsys5Leave(); } return (void*)p; }/*** Free memory.*/static void memsys5Free(void *pPrior){ if( pPrior==0 ){assert(0); return; } memsys5Enter(); memsys5FreeUnsafe(pPrior); memsys5Leave(); }/*** Change the size of an existing memory allocation*/static void *memsys5Realloc(void *pPrior, int nBytes){ int nOld; void *p; if( pPrior==0 ){ return memsys5Malloc(nBytes); } if( nBytes<=0 ){ memsys5Free(pPrior); return 0; } nOld = memsys5Size(pPrior); if( nBytes<=nOld ){ return pPrior; } memsys5Enter(); p = memsys5MallocUnsafe(nBytes); if( p ){ memcpy(p, pPrior, nOld); memsys5FreeUnsafe(pPrior); } memsys5Leave(); return p;}/*** Round up a request size to the next valid allocation size.*/static int memsys5Roundup(int n){ int iFullSz; for(iFullSz=mem5.nAtom; iFullSz<n; iFullSz *= 2); return iFullSz;}static int memsys5Log(int iValue){ int iLog; for(iLog=0; (1<<iLog)<iValue; iLog++); return iLog;}/*** Initialize this module.*/static int memsys5Init(void *NotUsed){ int ii; int nByte = sqlite3GlobalConfig.nHeap; u8 *zByte = (u8 *)sqlite3GlobalConfig.pHeap; int nMinLog; /* Log of minimum allocation size in bytes*/ int iOffset; UNUSED_PARAMETER(NotUsed); if( !zByte ){ return SQLITE_ERROR; } nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq); mem5.nAtom = (1<<nMinLog); while( (int)sizeof(Mem5Link)>mem5.nAtom ){ mem5.nAtom = mem5.nAtom << 1; } mem5.nBlock = (nByte / (mem5.nAtom+sizeof(u8))); mem5.zPool = zByte; mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.nAtom]; for(ii=0; ii<=LOGMAX; ii++){ mem5.aiFreelist[ii] = -1; } iOffset = 0; for(ii=LOGMAX; ii>=0; ii--){ int nAlloc = (1<<ii); if( (iOffset+nAlloc)<=mem5.nBlock ){ mem5.aCtrl[iOffset] = ii | CTRL_FREE; memsys5Link(iOffset, ii); iOffset += nAlloc; } assert((iOffset+nAlloc)>mem5.nBlock); } return SQLITE_OK;}/*** Deinitialize this module.*/static void memsys5Shutdown(void *NotUsed){ UNUSED_PARAMETER(NotUsed); return;}/*** Open the file indicated and write a log of all unfreed memory ** allocations into that log.*/void sqlite3Memsys5Dump(const char *zFilename){#ifdef SQLITE_DEBUG FILE *out; int i, j, n; int nMinLog; if( zFilename==0 || zFilename[0]==0 ){ out = stdout; }else{ out = fopen(zFilename, "w"); if( out==0 ){ fprintf(stderr, "** Unable to output memory debug output log: %s **\n", zFilename); return; } } memsys5Enter(); nMinLog = memsys5Log(mem5.nAtom); for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} fprintf(out, "freelist items of size %d: %d\n", mem5.nAtom << i, n); } fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); memsys5Leave(); if( out==stdout ){ fflush(stdout); }else{ fclose(out); }#else UNUSED_PARAMETER(zFilename);#endif}/*** This routine is the only routine in this file with external ** linkage. It returns a pointer to a static sqlite3_mem_methods** struct populated with the memsys5 methods.*/const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ static const sqlite3_mem_methods memsys5Methods = { memsys5Malloc, memsys5Free, memsys5Realloc, memsys5Size, memsys5Roundup, memsys5Init, memsys5Shutdown, 0 }; return &memsys5Methods;}#endif /* SQLITE_ENABLE_MEMSYS5 */
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -