亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? fpe.m

?? This function calculates Akaike s final prediction error % estimate of the average generalization e
?? M
字號:
function [FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms)
% 
%  FPE
%  --- 
%           This function calculates Akaike's final prediction error
%           estimate of the average generalization error.
%
%  [FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) produces the
%  final prediction error estimate (fpe), the effective number of
%  weights in the network if the network has been trained with
%  weight decay, an estimate of the noise variance, and the Gauss-Newton
%  Hessian.
%  
%  INPUT:
%           See for example the function MARQ 
%  
%  OUTPUT:
%  FPE    : The Final prediction error estimate 
%  deff   : The effective number of weights
%  varest : Estimate of the noise variance
%  H      : The Gauss-Newton Hessian
%
%  REFERENCE:
%       J. Larsen & L.K. Hansen:
%       "Generalization Performance of Regularized Neural Network Models"
%        Proc. of the IEEE Workshop on Neural networks for Signal Proc. IV,
%        Piscataway, New Jersey, pp.42-51, 1994
%
%  SEE ALSO:  NNFPE, LOO
%
%  Programmed by : Magnus Norgaard, IAU/IMM, Technical Univ. of Denmark
%  LastEditDate  : July 16, 1996


%----------------------------------------------------------------------------------
%--------------             NETWORK INITIALIZATIONS                   -------------
%----------------------------------------------------------------------------------
[outputs,N] = size(Y);                  % # of outputs and # of data
[hidden,inputs] = size(W1);             % # of hidden units 
inputs=inputs-1;                        % # of inputs
L_hidden = find(NetDef(1,:)=='L')';     % Location of linear hidden neurons
H_hidden = find(NetDef(1,:)=='H')';     % Location of tanh hidden neuron
L_output = find(NetDef(2,:)=='L')';     % Location of linear output neurons
H_output = find(NetDef(2,:)=='H')';     % Location of tanh output neurons
y1       = zeros(hidden,N);             % Hidden layer outputs
y2       = zeros(outputs,N);            % Network output
index = outputs*(hidden+1) + 1 + [0:hidden-1]*(inputs+1); % A usefull vector!
index2 = (0:N-1)*outputs;               % Yet another usefull vector
PHI_aug  = [PHI;ones(1,N)];             % Augment PHI with a row containing ones
parameters1= hidden*(inputs+1);         % # of input-to-hidden weights
parameters2= outputs*(hidden+1);        % # of hidden-to-output weights
parameters = parameters1 + parameters2; % Total # of weights
ones_h   = ones(hidden+1,1);            % A vector of ones
ones_i   = ones(inputs+1,1);            % Another vector of ones
                                        % Parameter vector containing all weights
theta = [reshape(W2',parameters2,1) ; reshape(W1',parameters1,1)];
theta_index = find(theta);              % Index to weights<>0
theta_red = theta(theta_index);         % Reduced parameter vector
reduced  = length(theta_index);         % The # of parameters in theta_red
reduced0 = reduced;                     % Copy of 'reduced'. Will be constant
theta_data=zeros(parameters,parameters);% Matrix used for collecting theta vectors
theta_data(:,reduced) = theta;          % Insert 'initial' theta
PSI      = zeros(parameters,outputs*N); % Deriv. of each output w.r.t. each weight
if length(trparms)==4,                  % Scalar weight decay parameter
  D = trparms(4*ones(1,reduced))';      
elseif length(trparms)==5,              % Two weight decay parameters
  D = trparms([4*ones(1,parameters2) 5*ones(1,parameters1)])';
  D = D(theta_index);
else                                    % No weight decay  D = 0;
  D = 0;
end


  % >>>>>>>>>>>  COMPUTE NETWORK OUTPUT FROM TRAINING DATA y2(theta)   <<<<<<<<<<<<
  h1 = W1*PHI_aug;  
  y1(H_hidden,:) = pmntanh(h1(H_hidden,:));
  y1(L_hidden,:) = h1(L_hidden,:);
  y1_aug=[y1; ones(1,N)];

  h2 = W2*y1_aug;
  y2(H_output,:) = pmntanh(h2(H_output,:));
        y2(L_output,:) = h2(L_output,:);
        
  E        = Y - y2;                      % Training error
  E_vector = E(:);                        % Reshape E into a long vector
  SSE      = E_vector'*E_vector;          % Sum of squared errors (SSE)
  PI = SSE/(2*N);                         % Value of cost function


  % >>>>>>>>>>>>>>>>>>>>>>>>>>   COMPUTE THE PSI MATRIX   <<<<<<<<<<<<<<<<<<<<<<<<<  
  % (The derivative of each network output (y2) with respect to each weight)

  % ============   Elements corresponding to the linear output units   ============
  for i = L_output',
    index1 = (i-1) * (hidden + 1) + 1;

    % -- The part of PSI corresponding to hidden-to-output layer weights --
    PSI(index1:index1+hidden,index2+i) = y1_aug;
    % ---------------------------------------------------------------------
  
    % -- The part of PSI corresponding to input-to-hidden layer weights ---
    for j = L_hidden',
       PSI(index(j):index(j)+inputs,index2+i) = W2(i,j)*PHI_aug;
    end
      
    for j = H_hidden',
      tmp = W2(i,j)*(1-y1(j,:).*y1(j,:)); 
      PSI(index(j):index(j)+inputs,index2+i) = tmp(ones_i,:).*PHI_aug;
    end 
    % ---------------------------------------------------------------------    
  end
  
  % ======= Elements corresponding to the hyperbolic tangent output units   =======
  for i = H_output',
    index1 = (i-1) * (hidden + 1) + 1;

    % -- The part of PSI corresponding to hidden-to-output layer weights --
    tmp = 1 - y2(i,:).*y2(i,:);
    PSI(index1:index1+hidden,index2+i) = y1_aug.*tmp(ones_h,:);
    % ---------------------------------------------------------------------
         
    % -- The part of PSI corresponding to input-to-hidden layer weights ---
    for j = L_hidden',
      tmp = W2(i,j)*(1-y2(i,:).*y2(i,:));
      PSI(index(j):index(j)+inputs,index2+i) = tmp(ones_i,:).* PHI_aug;
    end
      
    for j = H_hidden',
      tmp  = W2(i,j)*(1-y1(j,:).*y1(j,:));
      tmp2 = (1-y2(i,:).*y2(i,:));
      PSI(index(j):index(j)+inputs,index2+i) = tmp(ones_i,:)...
                                                .*tmp2(ones_i,:).* PHI_aug;
    end
    % ---------------------------------------------------------------------
  end
        
        
  % >>>>>>>>>>>>>>>>>>>>>>>>    COMPUTE THE HESSIAN MATRIX   <<<<<<<<<<<<<<<<<<<<<<
 
  % --- Calculate the HEssian matrix ---
  PSI_red = PSI(theta_index,:);
  R     = PSI_red*PSI_red';
  H     = R;
  index3   = 1:(reduced+1):(reduced^2);       % A third useful vector
  H(index3) = H(index3) + D';                 % Add weight deacy to diagonal

  % --- FPE in case of no weight decay ---
if D==0,
  FPE  = PI*(N + reduced) / (N - reduced);
  deff = reduced;
  varest = 2*N*PI/(N-reduced);
else

  % --- FPE in case of weight decay ---
  H_inv  = inv(H);                            % Inverse Hessian
  RHinv  = R*H_inv;
  Dmat   = diag(D);
  gamma1 = trace(RHinv*RHinv);                % Effective # of parameters
  gamma2 = trace(RHinv);        
  gamma3 = theta(theta_index)'*Dmat*H_inv*RHinv*Dmat*theta(theta_index)/N;
  varest = (2*N*PI-N*gamma3) / (N + gamma1 - 2*gamma2);
  FPE    = (varest*(1+gamma1/N) + gamma3)/2;  % FPE estimate
  deff = gamma1;                              % Effective # of parameters
end


?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品少妇自拍| 91麻豆精品国产自产在线观看一区| 精品国产免费久久| 精久久久久久久久久久| 26uuu欧美| 国产不卡一区视频| 亚洲人成网站精品片在线观看| 91小视频在线免费看| 亚洲午夜精品17c| 欧美成人福利视频| 国产一区二区在线影院| 国产精品蜜臀在线观看| 欧美色图第一页| 麻豆精品新av中文字幕| 亚洲国产激情av| 欧美色图在线观看| 久久国产婷婷国产香蕉| 国产精品久久久久精k8| 在线看国产日韩| 美女网站在线免费欧美精品| 国产偷国产偷精品高清尤物| 在线免费观看日本一区| 免费在线观看成人| 成人欧美一区二区三区| 日韩亚洲欧美中文三级| 欧美日韩一二三| 国产精品影音先锋| 亚洲一区二区三区四区五区黄| 日韩女优av电影| 色综合久久综合网欧美综合网| 日本亚洲三级在线| 亚洲人成7777| 久久精品人人做人人综合| 99精品欧美一区二区三区综合在线| 天天射综合影视| 国产日韩精品视频一区| 欧美日韩aaaaaa| 成年人午夜久久久| 久久不见久久见免费视频7 | 精品美女一区二区三区| 成人av电影在线网| 麻豆成人在线观看| 一区二区免费视频| 国产精品青草综合久久久久99| 欧美日韩高清影院| av一区二区久久| 国产精品自拍一区| 日本欧美久久久久免费播放网| 亚洲丝袜美腿综合| 中文字幕欧美激情| 精品久久久三级丝袜| 欧美日韩另类国产亚洲欧美一级| 成人国产精品视频| 国产乱码精品一区二区三区忘忧草| 亚洲国产日韩综合久久精品| 亚洲图片激情小说| 久久精品一二三| 日韩精品中文字幕在线不卡尤物| 在线观看一区二区精品视频| a在线播放不卡| 国产91精品一区二区麻豆网站| 久久激情综合网| 日本少妇一区二区| 日韩中文欧美在线| 亚洲图片欧美综合| 亚洲综合一二区| 一区二区久久久久久| 亚洲女人的天堂| 欧美国产精品专区| 久久久精品日韩欧美| www一区二区| 久久综合一区二区| 日韩欧美亚洲一区二区| 欧美一三区三区四区免费在线看| 91高清视频在线| 色吧成人激情小说| 91国偷自产一区二区三区观看| 99re成人精品视频| 色爱区综合激月婷婷| 色先锋资源久久综合| 91视频一区二区| 在线观看免费成人| 中文字幕第一区第二区| 久久久久久一级片| 国产精品人成在线观看免费| 国产精品成人一区二区三区夜夜夜 | 91视频com| 91黄色在线观看| 欧美精品久久一区二区三区| 91精品欧美福利在线观看| 欧美一区三区四区| 欧美一级一区二区| 2023国产一二三区日本精品2022| 久久综合色鬼综合色| 国产亚洲综合在线| 国产精品久久久久毛片软件| 亚洲天堂免费看| 亚洲在线视频网站| 久久精品国内一区二区三区| 国产成人av电影在线观看| 99精品偷自拍| 欧美日韩精品高清| 精品成a人在线观看| 国产精品视频yy9299一区| 亚洲一区二区不卡免费| 蜜桃在线一区二区三区| 国产成人精品影视| 欧美主播一区二区三区美女| 91精品国产麻豆国产自产在线 | 欧美福利视频一区| 精品国产乱码久久久久久1区2区| 精品乱码亚洲一区二区不卡| 欧美激情综合五月色丁香小说| 日韩理论片中文av| 蜜臀av一区二区在线观看| 成人一区二区三区在线观看| 欧美午夜电影一区| 国产日本欧美一区二区| 亚洲午夜私人影院| 国产99久久久久久免费看农村| 色婷婷综合激情| 久久综合网色—综合色88| 一区二区成人在线| 国产精品白丝av| 91麻豆精品国产91久久久久| 国产精品网站一区| 捆绑紧缚一区二区三区视频| 99国产精品久久久久久久久久 | 亚洲色图另类专区| 狠狠狠色丁香婷婷综合激情| 色哟哟欧美精品| 欧美激情综合在线| 蜜臀av一区二区在线免费观看 | 中文字幕亚洲成人| 色哟哟日韩精品| 国产人久久人人人人爽| 老色鬼精品视频在线观看播放| 色噜噜夜夜夜综合网| 国产精品乱码久久久久久| 日本色综合中文字幕| 欧亚洲嫩模精品一区三区| 国产欧美日本一区视频| 麻豆精品视频在线观看免费| 欧美偷拍一区二区| 中文字幕一区二区三区不卡在线| 久久福利视频一区二区| 欧美日韩另类国产亚洲欧美一级| 国产精品美女久久久久久| 精品一区二区在线视频| 911国产精品| 亚洲成人自拍网| 一本色道久久综合亚洲精品按摩| 久久精品视频免费观看| 激情欧美日韩一区二区| 欧美一级搡bbbb搡bbbb| 日韩精品福利网| 欧美日韩二区三区| 亚洲一区视频在线| 色8久久人人97超碰香蕉987| 国产精品白丝在线| 波多野结衣在线一区| 欧美国产综合一区二区| 国产高清不卡二三区| 久久午夜色播影院免费高清| 国产美女在线观看一区| 精品欧美一区二区久久| 久久99精品一区二区三区三区| 日韩欧美一二三四区| 老汉av免费一区二区三区| 日韩一区二区三区视频| 日本伊人午夜精品| 日韩色在线观看| 精品一区二区免费视频| 久久久www成人免费无遮挡大片| 精品在线一区二区| 久久久久久9999| 岛国一区二区三区| 亚洲欧洲国产专区| 欧美自拍丝袜亚洲| av欧美精品.com| 一区二区三区资源| 欧美日韩高清一区二区三区| 日韩电影免费在线看| 日韩亚洲欧美中文三级| 国产精品中文欧美| 亚洲欧美在线视频观看| 91九色02白丝porn| 日韩电影在线看| 久久久久久久久久电影| a亚洲天堂av| 日日夜夜精品免费视频| 精品国产网站在线观看| 成人精品高清在线| 亚洲综合一二三区| 欧美大片在线观看一区| 成人午夜激情视频| 亚洲一区二区av电影| 2014亚洲片线观看视频免费| 97久久人人超碰| 美女视频一区二区三区|