亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? gauss.m

?? 這是我找到的一個(gè)模式識(shí)別工具箱
?? M
字號(hào):
%GAUSS Generation of a multivariate Gaussian dataset% % 	A = GAUSS(N,U,G,LABTYPE) %% INPUT (in case of generation a 1-class dataset in K dimensions)%   N		    Number of objects to be generated (default 50).%   U		    Desired mean (vector of length K).%   G       K x K covariance matrix. Default eye(K).%   LABTYPE Label type (default 'crisp')%% INPUT (in case of generation a C-class dataset in K dimensions)%   N       Vector of length C with numbers of objects per class.%   U       C x K matrix with class means, or%           Dataset with means, labels and priors of classes %           (default: zeros(C,K))%   G       K x K x C covariance matrix of right size.%           Default eye(K);%   LABTYPE	Label type (default 'crisp')%% OUTPUT%   A       Dataset containing multivariate Gaussian data%% DESCRIPTION% Generation of N K-dimensional Gaussian distributed samples for C classes.% The covariance matrices should be specified in G (size K*K*C) and the% means, labels and prior probabilities can be defined by the dataset U with% size (C*K). If U is not a dataset, it should be a C*K matrix and A will% be a dataset with C classes.%% If N is a vector, exactly N(I) objects are generated for class I, I = 1..C.% % EXAMPLES% 1. Generation of 100 points in 2D with mean [1 1] and default covariance%    matrix: %%        GAUSS(100,[0 0])%% 2. Generation of 50 points for each of two 1-dimensional distributions with%    mean -1 and 1 and with variances 1 and 2:%%	     GAUSS([50 50],[-1;1],CAT(3,1,2))%%   Note that the two 1-dimensional class means should be given as a column%   vector [1;-1], as [1 -1] defines a single 2-dimensional mean. Note that%   the 1-dimensional covariance matrices degenerate to scalar variances,%   but have still to be combined into a collection of square matrices using%   the CAT(3,....) function.%% 3. Generation of 300 points for 3 classes with means [0 0], [0 1] and %    [1 1] and covariance matrices [2 1; 1 4], EYE(2) and EYE(2):%%      GAUSS(300,[0 0; 0 1; 1 1]*3,CAT(3,[2 1; 1 4],EYE(2),EYE(2)))%% SEE ALSO % DATASETS, PRDATASETS% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlandsfunction a = gauss(n,u,g,labtype)	prtrace(mfilename);	if (nargin < 1)		prwarning (2,'number of samples not specified, assuming N = 50'); 			n = 50;		end		cn = length(n);	if (nargin < 2)		prwarning (2,'means not specified; assuming one dimension, mean zero');		u = zeros(cn,1); 	end;	if (nargin < 3)		prwarning (2,'covariances not specified, assuming unity');	 	g = eye(size(u,2)); 	end	if (nargin < 4)		prwarning (3,'label type not specified, assuming crisp');		labtype = 'crisp'; 	end	% Return an empty dataset if the number of samples requested is 0.	if (length(n) == 1) & (n == 0)		a = dataset([]); 		return	end	% Find C, desired number of classes based on U and K, the number of 	% dimensions. Make sure U is a dataset containing the means.	if (isa(u,'dataset'))		[m,k,c] = getsize(u);		lablist = getlablist(u);		p = getprior(u);		if c == 0			u = double(u);		end	end	if isa(u,'double')		[m,k] = size(u); 				c = m;		lablist = genlab(ones(c,1));		u = dataset(u,lablist);		p = ones(1,c)/c;	end	if (cn ~= c) & (cn ~= 1)		error('The number of classes specified by N and U does not match');	end 	% Generate a class frequency distribution according to the desired priors.	n = genclass(n,p);	% Find CG, the number of classes according to G. 	% Make sure G is not a dataset.	if (isempty(g))		g = eye(k); 		cg = 1;	else		g = +g; [k1,k2,cg] = size(g);		if (k1 ~= k) | (k2 ~= k)			error('The number of dimensions of the means U and covariance matrices G do not match');		end		if (cg ~= m & cg ~= 1)			error('The number of classes specified by the means U and covariance matrices G do not match');		end	end	% Create the data A by rotating and scaling standard normal distributions 	% using the eigenvectors of the specified covariance matrices, and adding	% the means.	a = [];	for i = 1:m		j = min(i,cg);						% Just in case CG = 1 (if G was not specified).		% Sanity check: user can pass non-positive definite G.				[V,D] = eig(g(:,:,j)); V = real(V); D = real(D);			a = [a; randn(n(i),k)*sqrt(D)*V' + repmat(+u(i,:),n(i),1)];	end	% Convert A to dataset by adding labels and priors.	labels = genlab(n,lablist);	a = dataset(a,labels,'lablist',lablist,'prior',p);	% If non-crisp labels are requested, use output of Bayes classifier.	switch (labtype)		case 'crisp'			;		case 'soft'			w = nbayesc(u,g); 					targets = a*w*classc;			a = setlabtype(a,'soft',targets);		otherwise			error(['Label type ' labtype ' not supported'])	end	a = setname(a,'Gaussian Data');return

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩网站在线看片你懂的| 最新日韩在线视频| 国产精品热久久久久夜色精品三区 | 捆绑调教美女网站视频一区| 99这里都是精品| 日韩精品一区二| 一区二区三区在线免费播放| 国产精品一区专区| 日韩欧美视频在线| 亚洲一线二线三线视频| 99久久综合国产精品| 久久久噜噜噜久久人人看| 日本麻豆一区二区三区视频| 91久久一区二区| 国产精品福利一区| 国产成人精品影视| 久久亚洲影视婷婷| 另类小说综合欧美亚洲| 91精品国产综合久久国产大片| 一区二区在线观看av| 久久99精品久久久久久| 91精品国产麻豆国产自产在线| 亚洲一区国产视频| 99riav一区二区三区| 国产精品网站在线播放| 国产精品一区三区| 精品日韩99亚洲| 免费精品视频在线| 欧美猛男超大videosgay| 亚洲另类春色国产| 99国产精品视频免费观看| 欧美国产一区二区| 国产成人精品亚洲日本在线桃色 | 欧美一区二区高清| 亚洲超碰97人人做人人爱| 91成人国产精品| 亚洲精品网站在线观看| 色噜噜偷拍精品综合在线| 国产精品乱人伦中文| 福利91精品一区二区三区| 26uuu国产电影一区二区| 久久国产成人午夜av影院| 欧美一区二区成人6969| 视频一区视频二区在线观看| 欧美日韩日日骚| 亚洲成人免费在线观看| 欧美精品在线一区二区三区| 亚洲成人一区在线| 6080亚洲精品一区二区| 麻豆精品在线视频| 精品国产免费一区二区三区四区 | 一区二区三区毛片| 欧美色电影在线| 视频一区二区国产| 5858s免费视频成人| 麻豆一区二区99久久久久| 日韩欧美一区二区免费| 另类综合日韩欧美亚洲| 久久―日本道色综合久久| 国产精品18久久久| 中文字幕乱码久久午夜不卡| 91丨porny丨中文| 亚洲第一久久影院| 欧美一级国产精品| 狠狠色丁香久久婷婷综合丁香| 久久久综合视频| 成人h动漫精品一区二区| 亚洲天堂成人在线观看| 欧美性高清videossexo| 蜜桃传媒麻豆第一区在线观看| 精品女同一区二区| 成熟亚洲日本毛茸茸凸凹| 亚洲视频在线一区二区| 欧美日韩黄视频| 韩国一区二区视频| 亚洲欧洲精品一区二区精品久久久| 日本久久一区二区| 美女视频网站久久| 欧美国产视频在线| 欧美日韩综合在线免费观看| 精品一区二区免费在线观看| 国产清纯美女被跳蛋高潮一区二区久久w | 日韩成人一区二区三区在线观看| 精品久久免费看| 99久久久免费精品国产一区二区| 午夜国产精品影院在线观看| 欧美精品一区二区三区高清aⅴ| 成人av午夜电影| 亚洲成人av中文| 国产亚洲精久久久久久| 欧美最猛性xxxxx直播| 精品一区二区在线观看| 亚洲视频图片小说| 欧美成人福利视频| 色综合婷婷久久| 美女任你摸久久| 亚洲色图.com| 日韩欧美一区二区免费| 91视视频在线观看入口直接观看www | 日韩成人免费在线| 国产嫩草影院久久久久| 欧美精品1区2区3区| 国产69精品久久久久777| 亚洲国产精品久久久久秋霞影院| 久久综合久久综合久久| 欧美无人高清视频在线观看| 激情综合色综合久久| 一区二区三区日韩在线观看| 久久丝袜美腿综合| 欧美日韩国产一级| eeuss影院一区二区三区 | 亚洲日本一区二区| 精品少妇一区二区三区视频免付费| 97se亚洲国产综合在线| 国产一区不卡精品| 偷拍一区二区三区| 亚洲精品乱码久久久久久| 国产亚洲精品久| 日韩一区二区精品葵司在线| 色综合久久中文字幕综合网| 国产真实乱偷精品视频免| 亚洲国产精品久久艾草纯爱| 中文字幕一区二区三中文字幕| 精品va天堂亚洲国产| 欧美久久免费观看| 色综合久久88色综合天天| 国产精品一区久久久久| 免费成人你懂的| 午夜影院在线观看欧美| 尤物视频一区二区| 国产精品伦理在线| 国产日韩亚洲欧美综合| 欧美sm美女调教| 91精品啪在线观看国产60岁| 91久久精品午夜一区二区| 不卡欧美aaaaa| 国产69精品久久久久毛片| 国产在线播放一区三区四| 日韩高清不卡在线| 午夜av区久久| 亚洲国产精品久久不卡毛片 | 久久人人97超碰com| 日韩欧美不卡在线观看视频| 777色狠狠一区二区三区| 欧美性一区二区| 91麻豆国产自产在线观看| av电影天堂一区二区在线| 国产成人精品免费在线| 国产成人亚洲综合a∨猫咪| 国内偷窥港台综合视频在线播放| 老司机一区二区| 久久精品二区亚洲w码| 日韩福利视频网| 青青草91视频| 另类小说一区二区三区| 美女视频网站久久| 久久99深爱久久99精品| 精品在线亚洲视频| 国内精品嫩模私拍在线| 精品系列免费在线观看| 国产九色sp调教91| 国产69精品久久99不卡| 成人毛片老司机大片| 成人不卡免费av| 一本大道av一区二区在线播放| 色狠狠一区二区三区香蕉| 欧美在线不卡视频| 欧美日韩一区二区三区不卡| 777午夜精品视频在线播放| 日韩一区二区三区av| 日韩欧美中文一区| 精品久久久久99| 中文字幕第一页久久| 成人欧美一区二区三区在线播放| 日韩理论片一区二区| 亚洲夂夂婷婷色拍ww47 | 国产精品美女久久久久aⅴ| 成人免费一区二区三区视频| 亚洲精品亚洲人成人网在线播放| 一区二区成人在线| 三级亚洲高清视频| 久久99国产精品免费网站| 国产成人精品一区二| 亚洲乱码精品一二三四区日韩在线 | 欧美羞羞免费网站| 欧美一区二区啪啪| 久久久久久一二三区| 国产精品成人在线观看| 亚洲成年人网站在线观看| 久久精品国产亚洲一区二区三区| 国产精品一卡二卡| 91丨porny丨户外露出| 在线播放国产精品二区一二区四区 | 99久久99久久久精品齐齐| 91久久精品国产91性色tv| 91精品一区二区三区久久久久久 | 国产欧美精品一区| 一区二区不卡在线视频 午夜欧美不卡在 | 26uuu亚洲综合色| 亚洲私人黄色宅男|