亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
\title{Theory of differential offset continuation}\author{Sergey Fomel}\maketitle\begin{abstract} I introduce a partial differential equation to describe the  process of prestack reflection data transformation in the offset,  midpoint, and time coordinates. The equation is proved theoretically  to provide correct kinematics and amplitudes on the transformed  constant-offset sections. Solving an initial-value problem with the  proposed equation leads to integral and frequency-domain offset  continuation operators, which reduce to the known forms of dip  moveout operators in the case of continuation to zero offset.  \end{abstract}\section{Introduction}  The Earth subsurface is three-dimensional, while seismic reflectiondata from a multi-coverage acquisition belong to a five-dimensionalspace (time, 2-D offset, and 2-D midpoint coordinates). This factalone indicates the additional connection that existsin the data space. I show in this paper that it is possible, undercertain assumptions, to express this connection in a concisemathematical form of a partial differential equation. The theoreticalanalysis of this equation allows us to explain and predict the datatransformation between different offsets.  The partial differential equation, introduced in thispaper\footnote{To my knowledge, the first derivation of the revisedoffset continuation equation was accomplished by Joseph Higginbothamof Texaco in 1989.  Unfortunately, Higginbotham's derivation neverappeared in the open literature.}, describes the process of\emph{offset continuation}, which is a transformation of common-offsetseismic gathers from one constant offset to another\cite[]{GPR30-06-08130828}. \cite{GEO61-06-18461858} identified offsetcontinuation (OC) with a whole family of prestack continuationoperators, such as shot continuation \cite[]{SEG-1993-0673}, dipmoveout as a continuation to zero offset \cite[]{DMObook}, andthree-dimensional azimuth moveout \cite[]{GEO63-02-05740588}. Anintuitive introduction to the concept of offset continuation ispresented by \cite{TLE20-01-02100213}. A general data mappingprospective is developed by \cite{GPR48-01-01350162}.   As early as in 1982, Bolondi et al.  came up with the idea ofdescribing offset continuation and dip moveout (DMO) as a continuousprocess by means of a partial differential equation\cite[]{GPR30-06-08130828}.  However, their approximate differentialoperator, built on the results of Deregowski and Rocca's classic paper\cite[]{GPR29-03-03740406}, failed in the cases of steep reflector dipsor large offsets.  \cite{Hale.sepphd.36} writes:\begin{quote}  The differences between this algorithm [DMO by Fourier transform]  and previously published finite-difference DMO algorithms are  analogous to the differen\-ces be\-t\-ween  fre\-qu\-en\-cy-wave\-num\-ber  \cite[]{GEO43-01-00230048,GEO43-07-13421351} and  fi\-nite-dif\-fe\-rence \cite[]{Claerbout.fgdp.76} algorithms for  migration. For example, just as finite-difference migration  algorithms require approximations that break down at steep dips,  finite-difference DMO algorithms are inaccurate for large offsets  and steep dips, even for constant velocity.\end{quote}Continuing this analogy, we can observe that both finite-differenceand frequency-domain migration algorithms share a common origin: thewave equation. The new OC equation, presented in this paper and validfor all offsets and dips, plays a role analogous to that of the waveequation for offset continuation and dip moveout algorithms. Amultitude of seismic migration algorithms emerged from the fundamentalwave-propagation theory that is embedded in the wave equation.Likewise, the fundamentals of DMO algorithms can be traced to the OCdifferential equation.In the first part of the paper, I prove that the revised equationis, under certain assumptions, kinematically valid. This means thatwavefronts of the offset continuation process correspond to thereflection wave traveltimes and correctly transform between differentoffsets.  Moreover, the wave amplitudes are also propagated correctlyaccording to the \emph{true-amplitude} criterion \cite[]{GEO58-01-00470066}. In the second part of the paper, I relate the offset continuationequation to different methods of dip moveout. Considering DMO as acontinuation to zero offset, I show that DMO operators can be obtainedby solving a special initial value problem for the OCequation.  Different known forms of DMO \cite[]{DMObook} appear as specialcases of more general offset continuation operators.The companion paper \cite[]{GEO68-02-07330744} demonstrates apractical application of differential offset continuation to seismicdata interpolation.\section{Introducing the offset continuation equation}%%%%%%%%%%%%%%%%%%%%%%%%%%%% Most of the contents of this paper refer to the following linearpartial differential equation:\begin{equation}h \, \left( {\partial^2 P \over \partial y^2} - {\partial^2 P \over \partialh^2} \right) \, = \, t_n \, {\partial^2 P \over {\partial t_n \,\partial h}} \,\,\, . \label{eqn:OCequation} \end{equation}Equation~(\ref{eqn:OCequation}) describes an {\em artificial}(non-physical) process of transforming reflection seismic data$P(y,h,t_n)$ in the offset-midpoint-time domain. Inequation~(\ref{eqn:OCequation}), $h$ stands for the half-offset($h=(r-s)/2$, where $s$ and $r$ are the source and the receiversurface coordinates), $y$ is the midpoint ($y=(r+s)/2$), and $t_n$ is the timecoordinate after normal moveout correction is applied:\begin{equation}\label{eqn:tnmo}t_n=\sqrt{t^2-{4 \, h^2 \over v^2}}\;.\end{equation}The velocity $v$ is assumed to be known a priori.Equation~(\ref{eqn:OCequation}) belongs to the class of linearhyperbolic equations, with the offset $h$ acting as a time-likevariable. It describes a wave-like propagation in the offsetdirection.\subsection{Proof of validity}A simplified version of the ray method technique \cite[]{cerveny,babich}can allow us to prove the theoretical validity ofequation~(\ref{eqn:OCequation}) for all offsets and reflector dips byderiving two equations that describe separately wavefront (traveltime)and amplitude transformation.  According to the formal ray theory,the leading term of the high-frequency asymptotics for a reflectedwave recorded on a seismogram takes the form\begin{equation}   P\left(y,h,t_n\right) \approxA_n(y,h)\,R_n\left(t_n-\tau_n(y,h)\right) \;,\label{eqn:raymethod} \end{equation}  where $A_n$ stands for the amplitude, $R_n$ is the wavelet shape ofthe leading high-frequency term, and $\tau_n$ is the traveltime curveafter normal moveout. Inserting~(\ref{eqn:raymethod}) as a trialsolution for~(\ref{eqn:OCequation}), collecting terms that have thesame asymptotic order (correspond to the same-order derivatives of thewavelet $R_n$), and neglecting low-order terms, we arrive at the set oftwo first-order partial differential equations:\begin{equation}h \, \left[     {\left( \partial \tau_n \over \partial y \right)}^2 -                 {\left( \partial \tau_n \over \partial h \right)}^2     \right] = \, - \, \tau_n \, {\partial \tau_n \over \partial h} \,\,\,,  \label{eqn:eikonal} \end{equation}   \begin{equation}\left( \tau_n - 2h \, {\partial \tau_n \over {\partial h}} \right)\, {\partial A_n \over \partial h} + 2h {\partial \tau_n \over \partialy}   {\partial A_n \over \partial y} + h A_n \left( {\partial^2 \tau_n\over {\partial y^2}} - {\partial^2 \tau_n \over {\partial h^2}} \right) \, = \, 0 \,\,\,.\label{eqn:transport} \end{equation}Equation~(\ref{eqn:eikonal}) describes the transformation oftraveltime curve geometry in the OC process analogously to how theeikonal equation describes the front propagation in the classic wavetheory.  What appear to be wavefronts of the wave motion described byequation~(\ref{eqn:OCequation}) are traveltime curves of reflectedwaves recorded on seismic sections.  The law of amplitudetransformation for high-frequency wave components related to thosewavefronts is given by equation~(\ref{eqn:transport}).  In terms ofthe theory of partial differential equations,equation~(\ref{eqn:eikonal}) is the characteristic equationfor~(\ref{eqn:OCequation}).\subsection{Proof of kinematic equivalence}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%In order to prove the validity of equation~(\ref{eqn:eikonal}), it isconvenient to transform it to the coordinates of the initial shotgathers: $s=y-h$, $r=y+h$, and $\tau = \sqrt{\tau_n^2+{{4h^2} \over    {v^2}}}$. The transformed equation takes the form\begin{equation}\left( \tau^2 + {{(r-s)^2} \over {v^2}} \right) \left( {\partial \tau\over \partial r} -   {\partial \tau \over \partial s} \right) = 2 \, (r-s) \,\tau \left( {1 \over {v^2}} - {\partial \tau \over \partial r}{\partial \tau \over \partial s} \right) \,\,\,.\label{eqn:SCeikonal} \end{equation}Now the goal is to prove that any reflection traveltime function$\tau(r,s)$ in a constant velocity medium satisfies equation~(\ref{eqn:SCeikonal}). Let $S$ and $R$ be the source and the receiver locations, and $O$ be areflection point for that pair.  Note that the incident ray $SO$ andthe reflected ray $OR$ form a triangle with the basis on the offset$SR$ ($l=|SR|=|r-s|$).  Let $\alpha_1$ be the angle of $SO$ from thevertical axis, and $\alpha_2$ be the analogous angle of $RO$ (Figure\ref{fig:ocoray}). The law of sines gives us the following explicitrelationships between the sides and the angles of the triangle $SOR$:\begin{eqnarray}|SO|\,=\,|SR|\, {\cos{\alpha_2} \over\sin{\left(\alpha_2-\alpha_1\right)}} \,\,\,, \label{eqn:triangle1} \\ |RO|\,=\,|SR|\, {\cos{\alpha_1} \over\sin{\left(\alpha_2-\alpha_1\right)}} \,\,\,.\label{eqn:triangle2} \end{eqnarray} Hence, the total length of the reflected ray satisfies\begin{equation}v \tau = |SO|+|RO|=|SR|\,  {{\cos{\alpha_1}+ \cos{\alpha_2}} \over\sin{\left(\alpha_2-\alpha_1\right)}} = |r-s|\,{\cos{\alpha} \over\sin{\gamma}} \,\,\,.\label{eqn:length} \end{equation}Here $\gamma$ is the reflection angle ($\gamma = (\alpha_2 -\alpha_1)/2$), and $\alpha$ is the central ray angle ($\alpha =(\alpha_2 + \alpha_1)/2$), which coincides with the local dip angle ofthe reflector at the reflection point.  Recalling the well-knownrelationships between the ray angles and the first-order traveltimederivatives\begin{eqnarray}{{\partial \tau} \over {\partial s}} \,=\,{ {\sin{\alpha_1}} \over{v}} \,\,\,,\label{eqn:snell1}\\{{\partial \tau} \over {\partial r}} \,=\, {{\sin{\alpha_2}} \over {v}}  \label{eqn:snell2}\,\,\,,\end{eqnarray}  we can substitute~(\ref{eqn:length}),~(\ref{eqn:snell1}), and~(\ref{eqn:snell2}) into (\ref{eqn:SCeikonal}), which  leads to the simple trigonometric equality\begin{equation}\cos^2{\left( {\alpha_1 + \alpha_2} \over 2 \right)} +  \sin^2{\left( {\alpha_1 - \alpha_2} \over 2 \right)}\, = \, 1 -\sin{\alpha_1} \sin{\alpha_2} \,\,\,. \label{eqn:equality} \end{equation}It is now easy to show that equality~(\ref{eqn:equality}) is true for any$\alpha_1$ and $\alpha_2$, since\[\sin^2{a} - \sin^2 = \sin{(a+b)}\,\sin{(a-b)}\;.\]\inputdir{XFig}\sideplot{ocoray}{height=2.5in}{Reflection rays in a constantvelocity medium (a scheme).}Thus we have proved that equation(\ref{eqn:SCeikonal}), equivalent to~(\ref{eqn:eikonal}), is valid in constantvelocity media independently of the reflector geometry and the offset.This means that high-frequency asymptotic components of the waves,described by the OC equation,are located on the true reflection traveltime curves.  The theory of characteristics can provide other ways to prove thekinematic validity of equation~(\ref{eqn:eikonal}), as described by\cite{me} and \cite{plag}.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\subsection{Comparison with Bolondi's OC equation}Equation~(\ref{eqn:OCequation}) and the previously published OCequation \cite[]{GPR30-06-08130828} differ only with respect to thesingle term $\partial^2 P \over {\partial h^2}$. However, thisdifference is substantial.  From the offset continuation characteristic equation(\ref{eqn:eikonal}), we can conclude that the first-order traveltimederivative with respect to offset decreases with decreasingoffset. The derivative equals zero at the zero offset, as predicted by theprinciple of reciprocity (the reflection traveltime has to be an {\em  even} function of offset). Neglecting $\left({\partial \tau_n} \over  {\partial h}\right)^2$ in (\ref{eqn:eikonal}) leads to thecharacteristic equation\begin{equation} h \,   {\left( \partial \tau_n \over \partial y \right)}^2   = \, - \, \tau_n \, {\partial \tau_n \over \partial h}\;, \label{eqn:ITeikonal} \end{equation}which corresponds to the approximate OC equation of\cite{GPR30-06-08130828}. The approximate equation has the form\begin{equation}h \, {\partial^2 P \over \partial y^2} \, = \, t_n \, {\partial^2 P\over {\partial t_n \, \partial h}}\;.\label{eqn:bolondi} \end{equation}Comparing equations~(\ref{eqn:ITeikonal}) and (\ref{eqn:eikonal}), wecan note that approximation (\ref{eqn:ITeikonal}) is valid only if\begin{equation}{\left( \partial \tau_n \over \partial h \right)}^2 \, \ll\, {\left(\partial \tau_n \over \partial y \right)}^2 \,\,\,. \label{eqn:condition} \end{equation}To find the geometric constraints implied by inequality(\ref{eqn:condition}), we can express the traveltime derivatives ingeometric terms. As follows from expressions (\ref{eqn:snell1}) and(\ref{eqn:snell2}),\begin{eqnarray}\label{eqn:snells1}{{\partial \tau} \over {\partial y}} & = & {{\partial \tau} \over{\partial r}} + {{\partial \tau} \over {\partial s}} \,=\, { {2\sin{\alpha} \cos{\gamma}} \over {v}}\;, \\{{\partial \tau} \over{\partial h}} & = & {{\partial \tau} \over {\partial r}} - {{\partial\tau} \over {\partial s}} \,=\, { {2 \cos{\alpha} \sin{\gamma}} \over{v}}\;.\label{eqn:snells2}\end{eqnarray}Expression (\ref{eqn:length}) allows transforming

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
中文字幕综合网| 欧美日韩午夜精品| 日本一区二区视频在线| 国产乱码精品一区二区三区av | 一区二区三区国产| 欧美综合一区二区| 日精品一区二区| 日韩欧美一级二级三级| 精品一区二区三区在线观看| 国产亚洲短视频| 9i看片成人免费高清| 一区二区三区在线高清| 在线电影院国产精品| 国产专区欧美精品| 亚洲色图视频网| 欧美日韩一区二区三区免费看| 日韩av在线发布| 国产精品天天看| 欧美三区免费完整视频在线观看| 免费人成黄页网站在线一区二区| 久久久久久久国产精品影院| 99re热视频精品| 天天综合色天天综合色h| 久久久亚洲欧洲日产国码αv| av日韩在线网站| 日韩精品一级二级| 中文字幕一区在线观看| 91精品国产综合久久久久久久 | 午夜私人影院久久久久| 精品久久一区二区三区| 一本色道久久综合狠狠躁的推荐| 天天综合网 天天综合色| 国产亚洲欧美一级| 欧美日韩一卡二卡三卡| 国产成人免费视频网站 | 国内偷窥港台综合视频在线播放| 国产jizzjizz一区二区| 亚洲综合成人在线视频| 久久免费电影网| 欧美高清视频不卡网| 成人免费视频播放| 青青青伊人色综合久久| 亚洲视频一二三区| 精品成人一区二区| 欧美色图天堂网| 成人av第一页| 狠狠狠色丁香婷婷综合激情| 婷婷亚洲久悠悠色悠在线播放| 亚洲国产精华液网站w| 欧美日韩高清一区二区三区| 成人av在线播放网址| 六月丁香婷婷久久| 亚洲高清视频中文字幕| 亚洲天堂精品在线观看| 国产日韩欧美精品在线| 91麻豆精品国产91久久久久久| 色综合久久中文综合久久97 | 午夜天堂影视香蕉久久| 中文字幕一区不卡| 亚洲国产精品99久久久久久久久| 日韩欧美一区中文| 欧美日韩亚洲不卡| 在线观看免费视频综合| 国产91精品一区二区麻豆亚洲| 九九在线精品视频| 免费观看久久久4p| 日韩中文字幕亚洲一区二区va在线 | 欧美日韩国产首页| 欧美亚洲动漫另类| 色噜噜夜夜夜综合网| 91丝袜美女网| 91蜜桃免费观看视频| 97精品久久久久中文字幕| 国产毛片精品国产一区二区三区| 久久精品国产秦先生| 美国三级日本三级久久99 | 亚洲在线视频网站| 亚洲精品国产a| 99国内精品久久| 综合亚洲深深色噜噜狠狠网站| 欧美日韩在线亚洲一区蜜芽| 精品中文字幕一区二区| 亚洲精品高清视频在线观看| 另类小说一区二区三区| 99久免费精品视频在线观看| 18成人在线观看| 天天免费综合色| 国产麻豆视频精品| 一区二区久久久久久| 久久久高清一区二区三区| 欧美日韩国产经典色站一区二区三区 | 国产美女在线精品| 男人的天堂亚洲一区| 国产片一区二区| 国产精品天干天干在线综合| 91美女在线看| 国产精品影视在线观看| 91免费国产在线观看| 成人动漫一区二区在线| 国产精品原创巨作av| 色婷婷综合久久久中文一区二区| 国产精品一线二线三线精华| 色综合一个色综合| 欧美日韩你懂的| 久久亚洲一级片| 亚洲欧美日韩国产一区二区三区 | 一区二区三区精品在线| 国产精品国产精品国产专区不蜜 | 2020日本不卡一区二区视频| 欧美福利一区二区| 欧美肥妇毛茸茸| 欧美亚洲国产一区在线观看网站| 国产宾馆实践打屁股91| 成人av一区二区三区| 97精品视频在线观看自产线路二| 国产精品一区一区三区| 色呦呦网站一区| 91麻豆高清视频| 欧美专区亚洲专区| 久久精品欧美日韩精品 | 国产欧美一区二区三区沐欲| 日韩亚洲电影在线| 亚洲精品久久久久久国产精华液| 亚洲成av人片一区二区梦乃| 狠狠色丁香婷婷综合| 欧美性做爰猛烈叫床潮| 91精品国产黑色紧身裤美女| 国产精品久久久久久妇女6080| 欧美高清在线一区| 亚洲视频香蕉人妖| 亚洲国产视频一区二区| 激情综合一区二区三区| 日韩美女一区二区三区四区| 亚洲欧美成人一区二区三区| 欧美一级片在线| 中文字幕一区二区三区视频| 美女一区二区久久| 91年精品国产| 久久这里只有精品视频网| 亚洲综合久久久| 成人精品视频网站| 欧美mv日韩mv国产| 午夜日韩在线电影| 色综合久久久久| 欧美国产精品一区二区三区| 蜜桃av一区二区| 欧美男生操女生| 亚洲最大成人综合| 91在线观看免费视频| 国产人成一区二区三区影院| 久久精品99国产精品日本| 欧美日韩中文字幕一区二区| 亚洲日本一区二区三区| 床上的激情91.| 久久久综合九色合综国产精品| www.在线欧美| 国产日产精品1区| 国产一区二区三区黄视频| 欧美一区二区三区不卡| 亚洲成av人片一区二区| 在线欧美小视频| 亚洲男女一区二区三区| 99综合电影在线视频| 中文字幕在线不卡国产视频| 国产成人免费在线观看不卡| 国产性天天综合网| 国产一区美女在线| 久久老女人爱爱| 国产成人在线视频网站| 中文字幕精品—区二区四季| 不卡av在线网| 国产精品二三区| 在线免费观看视频一区| 亚洲精品国产第一综合99久久 | 欧美在线一二三四区| 亚洲欧洲在线观看av| 成人av网站在线观看免费| 国产三级精品三级| 菠萝蜜视频在线观看一区| 综合婷婷亚洲小说| 欧美色大人视频| 青草av.久久免费一区| 日韩精品中午字幕| 国产在线精品国自产拍免费| 久久久一区二区三区捆绑**| 成人午夜激情视频| 亚洲免费毛片网站| 欧美精品一级二级三级| 亚洲色欲色欲www| 蜜桃av一区二区三区电影| 久久国产福利国产秒拍| 一区二区激情小说| 中文字幕一区二区三区av| 欧美二区三区91| 日韩免费一区二区| 欧美人成免费网站| 欧美老肥妇做.爰bbww| 欧美一级片在线| 欧美经典一区二区三区| 中文字幕欧美一区|