亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
\title{Theory of differential offset continuation}\author{Sergey Fomel}\maketitle\begin{abstract} I introduce a partial differential equation to describe the  process of prestack reflection data transformation in the offset,  midpoint, and time coordinates. The equation is proved theoretically  to provide correct kinematics and amplitudes on the transformed  constant-offset sections. Solving an initial-value problem with the  proposed equation leads to integral and frequency-domain offset  continuation operators, which reduce to the known forms of dip  moveout operators in the case of continuation to zero offset.  \end{abstract}\section{Introduction}  The Earth subsurface is three-dimensional, while seismic reflectiondata from a multi-coverage acquisition belong to a five-dimensionalspace (time, 2-D offset, and 2-D midpoint coordinates). This factalone indicates the additional connection that existsin the data space. I show in this paper that it is possible, undercertain assumptions, to express this connection in a concisemathematical form of a partial differential equation. The theoreticalanalysis of this equation allows us to explain and predict the datatransformation between different offsets.  The partial differential equation, introduced in thispaper\footnote{To my knowledge, the first derivation of the revisedoffset continuation equation was accomplished by Joseph Higginbothamof Texaco in 1989.  Unfortunately, Higginbotham's derivation neverappeared in the open literature.}, describes the process of\emph{offset continuation}, which is a transformation of common-offsetseismic gathers from one constant offset to another\cite[]{GPR30-06-08130828}. \cite{GEO61-06-18461858} identified offsetcontinuation (OC) with a whole family of prestack continuationoperators, such as shot continuation \cite[]{SEG-1993-0673}, dipmoveout as a continuation to zero offset \cite[]{DMObook}, andthree-dimensional azimuth moveout \cite[]{GEO63-02-05740588}. Anintuitive introduction to the concept of offset continuation ispresented by \cite{TLE20-01-02100213}. A general data mappingprospective is developed by \cite{GPR48-01-01350162}.   As early as in 1982, Bolondi et al.  came up with the idea ofdescribing offset continuation and dip moveout (DMO) as a continuousprocess by means of a partial differential equation\cite[]{GPR30-06-08130828}.  However, their approximate differentialoperator, built on the results of Deregowski and Rocca's classic paper\cite[]{GPR29-03-03740406}, failed in the cases of steep reflector dipsor large offsets.  \cite{Hale.sepphd.36} writes:\begin{quote}  The differences between this algorithm [DMO by Fourier transform]  and previously published finite-difference DMO algorithms are  analogous to the differen\-ces be\-t\-ween  fre\-qu\-en\-cy-wave\-num\-ber  \cite[]{GEO43-01-00230048,GEO43-07-13421351} and  fi\-nite-dif\-fe\-rence \cite[]{Claerbout.fgdp.76} algorithms for  migration. For example, just as finite-difference migration  algorithms require approximations that break down at steep dips,  finite-difference DMO algorithms are inaccurate for large offsets  and steep dips, even for constant velocity.\end{quote}Continuing this analogy, we can observe that both finite-differenceand frequency-domain migration algorithms share a common origin: thewave equation. The new OC equation, presented in this paper and validfor all offsets and dips, plays a role analogous to that of the waveequation for offset continuation and dip moveout algorithms. Amultitude of seismic migration algorithms emerged from the fundamentalwave-propagation theory that is embedded in the wave equation.Likewise, the fundamentals of DMO algorithms can be traced to the OCdifferential equation.In the first part of the paper, I prove that the revised equationis, under certain assumptions, kinematically valid. This means thatwavefronts of the offset continuation process correspond to thereflection wave traveltimes and correctly transform between differentoffsets.  Moreover, the wave amplitudes are also propagated correctlyaccording to the \emph{true-amplitude} criterion \cite[]{GEO58-01-00470066}. In the second part of the paper, I relate the offset continuationequation to different methods of dip moveout. Considering DMO as acontinuation to zero offset, I show that DMO operators can be obtainedby solving a special initial value problem for the OCequation.  Different known forms of DMO \cite[]{DMObook} appear as specialcases of more general offset continuation operators.The companion paper \cite[]{GEO68-02-07330744} demonstrates apractical application of differential offset continuation to seismicdata interpolation.\section{Introducing the offset continuation equation}%%%%%%%%%%%%%%%%%%%%%%%%%%%% Most of the contents of this paper refer to the following linearpartial differential equation:\begin{equation}h \, \left( {\partial^2 P \over \partial y^2} - {\partial^2 P \over \partialh^2} \right) \, = \, t_n \, {\partial^2 P \over {\partial t_n \,\partial h}} \,\,\, . \label{eqn:OCequation} \end{equation}Equation~(\ref{eqn:OCequation}) describes an {\em artificial}(non-physical) process of transforming reflection seismic data$P(y,h,t_n)$ in the offset-midpoint-time domain. Inequation~(\ref{eqn:OCequation}), $h$ stands for the half-offset($h=(r-s)/2$, where $s$ and $r$ are the source and the receiversurface coordinates), $y$ is the midpoint ($y=(r+s)/2$), and $t_n$ is the timecoordinate after normal moveout correction is applied:\begin{equation}\label{eqn:tnmo}t_n=\sqrt{t^2-{4 \, h^2 \over v^2}}\;.\end{equation}The velocity $v$ is assumed to be known a priori.Equation~(\ref{eqn:OCequation}) belongs to the class of linearhyperbolic equations, with the offset $h$ acting as a time-likevariable. It describes a wave-like propagation in the offsetdirection.\subsection{Proof of validity}A simplified version of the ray method technique \cite[]{cerveny,babich}can allow us to prove the theoretical validity ofequation~(\ref{eqn:OCequation}) for all offsets and reflector dips byderiving two equations that describe separately wavefront (traveltime)and amplitude transformation.  According to the formal ray theory,the leading term of the high-frequency asymptotics for a reflectedwave recorded on a seismogram takes the form\begin{equation}   P\left(y,h,t_n\right) \approxA_n(y,h)\,R_n\left(t_n-\tau_n(y,h)\right) \;,\label{eqn:raymethod} \end{equation}  where $A_n$ stands for the amplitude, $R_n$ is the wavelet shape ofthe leading high-frequency term, and $\tau_n$ is the traveltime curveafter normal moveout. Inserting~(\ref{eqn:raymethod}) as a trialsolution for~(\ref{eqn:OCequation}), collecting terms that have thesame asymptotic order (correspond to the same-order derivatives of thewavelet $R_n$), and neglecting low-order terms, we arrive at the set oftwo first-order partial differential equations:\begin{equation}h \, \left[     {\left( \partial \tau_n \over \partial y \right)}^2 -                 {\left( \partial \tau_n \over \partial h \right)}^2     \right] = \, - \, \tau_n \, {\partial \tau_n \over \partial h} \,\,\,,  \label{eqn:eikonal} \end{equation}   \begin{equation}\left( \tau_n - 2h \, {\partial \tau_n \over {\partial h}} \right)\, {\partial A_n \over \partial h} + 2h {\partial \tau_n \over \partialy}   {\partial A_n \over \partial y} + h A_n \left( {\partial^2 \tau_n\over {\partial y^2}} - {\partial^2 \tau_n \over {\partial h^2}} \right) \, = \, 0 \,\,\,.\label{eqn:transport} \end{equation}Equation~(\ref{eqn:eikonal}) describes the transformation oftraveltime curve geometry in the OC process analogously to how theeikonal equation describes the front propagation in the classic wavetheory.  What appear to be wavefronts of the wave motion described byequation~(\ref{eqn:OCequation}) are traveltime curves of reflectedwaves recorded on seismic sections.  The law of amplitudetransformation for high-frequency wave components related to thosewavefronts is given by equation~(\ref{eqn:transport}).  In terms ofthe theory of partial differential equations,equation~(\ref{eqn:eikonal}) is the characteristic equationfor~(\ref{eqn:OCequation}).\subsection{Proof of kinematic equivalence}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%In order to prove the validity of equation~(\ref{eqn:eikonal}), it isconvenient to transform it to the coordinates of the initial shotgathers: $s=y-h$, $r=y+h$, and $\tau = \sqrt{\tau_n^2+{{4h^2} \over    {v^2}}}$. The transformed equation takes the form\begin{equation}\left( \tau^2 + {{(r-s)^2} \over {v^2}} \right) \left( {\partial \tau\over \partial r} -   {\partial \tau \over \partial s} \right) = 2 \, (r-s) \,\tau \left( {1 \over {v^2}} - {\partial \tau \over \partial r}{\partial \tau \over \partial s} \right) \,\,\,.\label{eqn:SCeikonal} \end{equation}Now the goal is to prove that any reflection traveltime function$\tau(r,s)$ in a constant velocity medium satisfies equation~(\ref{eqn:SCeikonal}). Let $S$ and $R$ be the source and the receiver locations, and $O$ be areflection point for that pair.  Note that the incident ray $SO$ andthe reflected ray $OR$ form a triangle with the basis on the offset$SR$ ($l=|SR|=|r-s|$).  Let $\alpha_1$ be the angle of $SO$ from thevertical axis, and $\alpha_2$ be the analogous angle of $RO$ (Figure\ref{fig:ocoray}). The law of sines gives us the following explicitrelationships between the sides and the angles of the triangle $SOR$:\begin{eqnarray}|SO|\,=\,|SR|\, {\cos{\alpha_2} \over\sin{\left(\alpha_2-\alpha_1\right)}} \,\,\,, \label{eqn:triangle1} \\ |RO|\,=\,|SR|\, {\cos{\alpha_1} \over\sin{\left(\alpha_2-\alpha_1\right)}} \,\,\,.\label{eqn:triangle2} \end{eqnarray} Hence, the total length of the reflected ray satisfies\begin{equation}v \tau = |SO|+|RO|=|SR|\,  {{\cos{\alpha_1}+ \cos{\alpha_2}} \over\sin{\left(\alpha_2-\alpha_1\right)}} = |r-s|\,{\cos{\alpha} \over\sin{\gamma}} \,\,\,.\label{eqn:length} \end{equation}Here $\gamma$ is the reflection angle ($\gamma = (\alpha_2 -\alpha_1)/2$), and $\alpha$ is the central ray angle ($\alpha =(\alpha_2 + \alpha_1)/2$), which coincides with the local dip angle ofthe reflector at the reflection point.  Recalling the well-knownrelationships between the ray angles and the first-order traveltimederivatives\begin{eqnarray}{{\partial \tau} \over {\partial s}} \,=\,{ {\sin{\alpha_1}} \over{v}} \,\,\,,\label{eqn:snell1}\\{{\partial \tau} \over {\partial r}} \,=\, {{\sin{\alpha_2}} \over {v}}  \label{eqn:snell2}\,\,\,,\end{eqnarray}  we can substitute~(\ref{eqn:length}),~(\ref{eqn:snell1}), and~(\ref{eqn:snell2}) into (\ref{eqn:SCeikonal}), which  leads to the simple trigonometric equality\begin{equation}\cos^2{\left( {\alpha_1 + \alpha_2} \over 2 \right)} +  \sin^2{\left( {\alpha_1 - \alpha_2} \over 2 \right)}\, = \, 1 -\sin{\alpha_1} \sin{\alpha_2} \,\,\,. \label{eqn:equality} \end{equation}It is now easy to show that equality~(\ref{eqn:equality}) is true for any$\alpha_1$ and $\alpha_2$, since\[\sin^2{a} - \sin^2{b} = \sin{(a+b)}\,\sin{(a-b)}\;.\]\inputdir{XFig}\sideplot{ocoray}{height=2.5in}{Reflection rays in a constantvelocity medium (a scheme).}Thus we have proved that equation(\ref{eqn:SCeikonal}), equivalent to~(\ref{eqn:eikonal}), is valid in constantvelocity media independently of the reflector geometry and the offset.This means that high-frequency asymptotic components of the waves,described by the OC equation,are located on the true reflection traveltime curves.  The theory of characteristics can provide other ways to prove thekinematic validity of equation~(\ref{eqn:eikonal}), as described by\cite{me} and \cite{plag}.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\subsection{Comparison with Bolondi's OC equation}Equation~(\ref{eqn:OCequation}) and the previously published OCequation \cite[]{GPR30-06-08130828} differ only with respect to thesingle term $\partial^2 P \over {\partial h^2}$. However, thisdifference is substantial.  From the offset continuation characteristic equation(\ref{eqn:eikonal}), we can conclude that the first-order traveltimederivative with respect to offset decreases with decreasingoffset. The derivative equals zero at the zero offset, as predicted by theprinciple of reciprocity (the reflection traveltime has to be an {\em  even} function of offset). Neglecting $\left({\partial \tau_n} \over  {\partial h}\right)^2$ in (\ref{eqn:eikonal}) leads to thecharacteristic equation\begin{equation} h \,   {\left( \partial \tau_n \over \partial y \right)}^2   = \, - \, \tau_n \, {\partial \tau_n \over \partial h}\;, \label{eqn:ITeikonal} \end{equation}which corresponds to the approximate OC equation of\cite{GPR30-06-08130828}. The approximate equation has the form\begin{equation}h \, {\partial^2 P \over \partial y^2} \, = \, t_n \, {\partial^2 P\over {\partial t_n \, \partial h}}\;.\label{eqn:bolondi} \end{equation}Comparing equations~(\ref{eqn:ITeikonal}) and (\ref{eqn:eikonal}), wecan note that approximation (\ref{eqn:ITeikonal}) is valid only if\begin{equation}{\left( \partial \tau_n \over \partial h \right)}^2 \, \ll\, {\left(\partial \tau_n \over \partial y \right)}^2 \,\,\,. \label{eqn:condition} \end{equation}To find the geometric constraints implied by inequality(\ref{eqn:condition}), we can express the traveltime derivatives ingeometric terms. As follows from expressions (\ref{eqn:snell1}) and(\ref{eqn:snell2}),\begin{eqnarray}\label{eqn:snells1}{{\partial \tau} \over {\partial y}} & = & {{\partial \tau} \over{\partial r}} + {{\partial \tau} \over {\partial s}} \,=\, { {2\sin{\alpha} \cos{\gamma}} \over {v}}\;, \\{{\partial \tau} \over{\partial h}} & = & {{\partial \tau} \over {\partial r}} - {{\partial\tau} \over {\partial s}} \,=\, { {2 \cos{\alpha} \sin{\gamma}} \over{v}}\;.\label{eqn:snells2}\end{eqnarray}Expression (\ref{eqn:length}) allows transforming

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲国产精品久久久久秋霞影院 | 欧美日韩在线电影| 日韩午夜精品电影| 亚洲午夜国产一区99re久久| 成人av在线影院| 中文成人综合网| 日本精品免费观看高清观看| 国产欧美精品日韩区二区麻豆天美| 麻豆成人在线观看| 精品少妇一区二区三区 | 奇米在线7777在线精品| 制服丝袜中文字幕亚洲| 石原莉奈一区二区三区在线观看| 日本黄色一区二区| 亚洲国产精品久久不卡毛片| 欧美视频一区二区三区四区| 日一区二区三区| 欧美电影免费观看高清完整版在 | 精品视频在线免费看| 国产精品丝袜在线| 91国模大尺度私拍在线视频| 亚洲国产日韩a在线播放性色| 欧美午夜在线观看| 风间由美一区二区三区在线观看 | 欧美成人精品1314www| 成人午夜激情视频| 水野朝阳av一区二区三区| 精品国精品自拍自在线| 北岛玲一区二区三区四区 | 日韩欧美在线观看一区二区三区| 蜜臀av性久久久久蜜臀av麻豆 | 精品福利在线导航| 91年精品国产| 裸体健美xxxx欧美裸体表演| 国产拍欧美日韩视频二区| 欧美三级韩国三级日本三斤| 国产精品一区久久久久| 午夜精品久久久久影视| 国产视频在线观看一区二区三区| 欧美日韩电影在线播放| 国产专区综合网| 免费成人在线影院| 亚洲男人电影天堂| 国产精品乱人伦中文| 精品sm捆绑视频| 欧美大片在线观看| 日韩一区二区视频| 日韩美女视频一区二区在线观看| 欧洲亚洲国产日韩| 欧美色中文字幕| 日韩欧美一级二级| 欧美中文字幕一区二区三区亚洲| 国产999精品久久久久久| 久久99精品国产麻豆婷婷| 奇米888四色在线精品| 婷婷国产在线综合| 日韩电影网1区2区| 免费视频一区二区| 久久se这里有精品| 国产伦精品一区二区三区在线观看| 蜜臀91精品一区二区三区| 日本成人在线看| 麻豆成人91精品二区三区| 韩国中文字幕2020精品| 成人一区在线看| 91福利国产精品| 久久蜜桃香蕉精品一区二区三区| 精品理论电影在线观看| 国产精品视频免费看| 一区二区免费看| 狠狠狠色丁香婷婷综合久久五月| 成人综合在线视频| 欧美色图片你懂的| 欧美精品一区二区三区视频 | 精品国产1区二区| 亚洲天堂福利av| 色婷婷狠狠综合| 欧美日韩成人综合天天影院| 精品久久久久久久久久久院品网 | 久久丝袜美腿综合| 久久久久久久性| 日韩一区二区电影网| 综合欧美一区二区三区| 日韩av网站在线观看| 不卡一区二区在线| 精品国内二区三区| 爽好久久久欧美精品| 99久久精品免费看国产免费软件| 日韩一区二区高清| 亚洲午夜国产一区99re久久| 成人黄色在线网站| 久久综合九色综合欧美就去吻| 樱桃国产成人精品视频| 国产成人在线色| 久久无码av三级| 日本怡春院一区二区| 欧美视频一区二区三区四区| 国产精品久久久久久福利一牛影视| 另类小说欧美激情| 日韩一区二区在线看片| 奇米色一区二区| 91精品国产入口在线| 午夜精品福利一区二区三区av| 91久久国产最好的精华液| 一区二区三区在线高清| 日韩欧美成人一区二区| 亚洲国产精品嫩草影院| 欧美一区二区三区视频在线| 日韩 欧美一区二区三区| 69堂成人精品免费视频| 奇米综合一区二区三区精品视频 | 免费xxxx性欧美18vr| 欧美一级日韩免费不卡| 奇米影视一区二区三区| 国产日产欧美一区二区视频| 成人av午夜影院| 一区二区视频在线看| 这里只有精品视频在线观看| 久久狠狠亚洲综合| 国产精品女上位| 欧美日韩国产美| 激情丁香综合五月| 一区二区三区四区在线播放| 7777精品久久久大香线蕉| 国产精品综合久久| 亚洲精品高清视频在线观看| 欧美一区二区在线免费观看| 国产高清视频一区| 午夜视频在线观看一区二区| 日本一区二区免费在线观看视频 | 欧美写真视频网站| 国产一区二区三区香蕉| 爽好久久久欧美精品| 亚洲欧美日本韩国| 久久免费美女视频| 911精品产国品一二三产区 | 亚洲午夜视频在线观看| 中文字幕精品一区二区精品绿巨人 | 日韩午夜精品电影| 欧美日韩在线电影| 在线视频你懂得一区二区三区| 国产在线视频一区二区三区| 五月激情综合婷婷| 日韩精品电影一区亚洲| 亚洲成人激情av| 亚洲第一福利一区| 亚洲一区二区黄色| 亚洲高清免费观看| 午夜一区二区三区视频| 青娱乐精品视频| 婷婷综合久久一区二区三区| 自拍偷自拍亚洲精品播放| 亚洲三级免费电影| 亚洲免费观看视频| 亚洲国产裸拍裸体视频在线观看乱了 | 欧美日韩国产综合草草| 欧美亚日韩国产aⅴ精品中极品| 日本道精品一区二区三区| 91蜜桃传媒精品久久久一区二区| jlzzjlzz亚洲日本少妇| 日本高清不卡一区| 欧美午夜精品久久久久久超碰| 欧美丝袜第三区| 日韩久久精品一区| 日韩伦理电影网| 日韩高清不卡一区二区三区| 美女在线观看视频一区二区| 懂色av一区二区三区免费看| 欧洲一区二区三区免费视频| 欧美日韩一区不卡| 久久一日本道色综合| 亚洲欧美另类在线| 免费在线观看日韩欧美| 成人精品小蝌蚪| 日韩一卡二卡三卡四卡| 国产精品乱码一区二三区小蝌蚪| 夜夜嗨av一区二区三区网页| 久久精品国产第一区二区三区| 精品人伦一区二区色婷婷| 国产精品美女www爽爽爽| 午夜电影一区二区三区| 成人听书哪个软件好| 在线电影一区二区三区| 国产精品久久久久久久蜜臀| 首页国产欧美久久| 在线观看亚洲精品| 亚洲国产高清aⅴ视频| 青椒成人免费视频| 欧美三级午夜理伦三级中视频| 中文字幕不卡三区| 久久99精品国产麻豆不卡| 欧美一区二区三区色| 亚洲午夜影视影院在线观看| 99国产欧美久久久精品| 国产日产精品1区| 国产盗摄一区二区三区| 精品国产一区二区精华| 蜜桃传媒麻豆第一区在线观看| 欧美性色黄大片| 日本美女视频一区二区|