亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
equations~(\ref{eqn:snells1}) and (\ref{eqn:snells2}) to the form\begin{eqnarray}\label{eqn:connection1}\tau_n \, {{\partial \tau_n} \over {\partial y}} & = & \tau \, {{\partial\tau} \over {\partial y}} \,=\, 4h\,{{\sin{\alpha} \cos{\alpha}\cot{\gamma}} \over {v^2}}\;; \\ \tau_n \, {{\partial \tau_n} \over {\partial h}} & = &\tau \, {{\partial\tau} \over {\partial h}} - {{4h} \over {v^2}} \,=\,-\,4h\,{{\sin^2{\alpha}} \over {v^2}}\;.   \label{eqn:connection2} \end{eqnarray}Without loss of generality, we can assume $\alpha$ to be positive.Consider a plane tangent to a true reflector at the reflectionpoint(Figure \ref{fig:ocobol}).The traveltime of a wave, reflected from the plane, has theknown explicit expression\begin{equation}\tau\,=\,{2 \over v}\,\sqrt{L^2+h^2\,\cos^2{\alpha}}\,\,\,,   \label{eqn:CDP} \end{equation}where $L$ is the length of the normal ray from the midpoint. Asfollows from combining (\ref{eqn:CDP}) and (\ref{eqn:length}),\begin{equation}{\cos{\alpha} \cot{\gamma}} \,=\, {L \over h}   \,\,\,.\label{eqn:ratio} \end{equation}We can now combine equations~(\ref{eqn:ratio}),(\ref{eqn:connection1}), and (\ref{eqn:connection2}) to transforminequality (\ref{eqn:condition}) to the form\begin{equation} h \ll {L \over {\sin{\alpha}}} \,=\, z\, \cot{\alpha}\,\,,   \label{eqn:hm} \end{equation}where $z$ is the depth of the plane reflector under the midpoint.  Forexample, for a dip of 45 degrees, equation~(\ref{eqn:bolondi}) will besatisfied only for offsets that are much smaller than the depth of thereflector.\sideplot{ocobol}{height=2.5in}{Reflection rays andtangent to the reflector in a constant velocity medium (a scheme).}  \subsection{Offset continuation geometry: time rays}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%To study the laws of traveltime curve transformation in the OCprocess, it is convenient to apply the method of characteristics\cite[]{kurant} to the eikonal-type equation~(\ref{eqn:eikonal}). Thecharacteristics of equation~(\ref{eqn:eikonal}) [{\em  bi}-characteristics with respect to equation (\ref{eqn:OCequation})]are the trajectories of the high-frequency energy propagation in theimaginary OC process. Following the formal analogy with seismic rays,I call those trajectories {\em time rays}, where the word {\em time}refers to the fact that the trajectories describe the traveltimetransformation \cite[]{me}.  According to the theory of first-orderpartial differential equations, time rays are determined by a set ofordinary differential equations (characteristic equations) derivedfrom equation (\ref{eqn:eikonal}) :\begin{eqnarray}{{{dy} \over {dt_n}}   =  - {{2 h Y} \over {t_n H}}}\;,\; {{{dY} \over {dt_n}}  =  {Y \over t_n}}\;, \nonumber \\{{{dh} \over {dt_n}}  =  {-{1 \over H}+{{2 h} \over t_n}}}\;,\;{{{dH} \over {dt_n}} = {{Y^2} \over {t_n H}}}\;, \label{eqn:rays} \end{eqnarray}where $Y$ corresponds to $\partial \tau_n \over \partial y$ along aray and $H$ corresponds to $\partial \tau_n \over \partial h$. In thisnotation, equation~(\ref{eqn:eikonal}) takes the form\begin{equation}h\, (Y^2-H^2) = -\, t_n H \label{eqn:rayeikonal} \end{equation}and serves as an additional constraint for the definition of timerays.  System~(\ref{eqn:rays}) can be solved by standard mathematicalmethods \cite[]{ode}. Its general solution takes the parametric form,where the time variable $t_n$ is the parameter changing along a timeray:\begin{eqnarray}y(t_n)  =  C_1-C_2\,t_n^2 \; & ; & \;h(t_n)=t_n \sqrt{C_2^2 t_n^2 + C_3}\;;\\ Y(t_n)  =  {{C_2\,t_n}\over C_3}\; & ; & \;H(t_n)={h \over {C_3\,t_n}}\label{eqn:ray} \end{eqnarray}and $C_1$, $C_2$, and $C_3$ are independent coefficients, constantalong each time ray. To find the values of these coefficients, we canpose an initial-value problem for the system of differentialequations~(\ref{eqn:rays}).  The traveltime curve $\tau_n(y;h)$ for agiven common offset $h$ and the first partial derivative $\partial\tau_n \over \partial h$ along the same constant offset sectionprovide natural initial conditions. A particular case of thoseconditions is the zero-offset traveltime curve. If the first partialderivative of traveltime with respect to offset is continuous, itvanishes at zero offset according to the reciprocity principle(traveltime must be an even function of the offset):\begin{math}t_0\left(y_0\right)=\tau_n(y;0), \left. {\partial \tau_n \over \partial h} \right|_{h=0}=0\,.  \end{math}Applying the initial-value conditions to the generalsolution~(\ref{eqn:ray}) generates the following expressions for theray invariants:\begin{eqnarray}C_1 & = & y+h\,{Y \over H}=y_0-{t_0\left(y_0\right) \overt_0'\left(y_0\right)}\;;\;C_2={{h\,Y} \over {\tau_n^2\,H}}=-{1 \over t_0\left(y_0\right)\,t_0'\left(y_0\right)}\;;\;\nonumber \\C_3 & = & {h \over {\tau_n\,H}}=-{1 \over \left(t_0'\left(y_0\right)\right)^2}\;,\label{eqn:abc} \end{eqnarray}where $t_0'\left(y_0\right)$ denotes the derivative$\frac{d\,t_0}{d\,y_0}$.  Finally, substitutingequations~(\ref{eqn:abc})into~(\ref{eqn:ray}), we obtain an explicit parametric form of the raytrajectories:\begin{eqnarray}\label{eqn:yhray1}y_1\left(t_1\right)  & = & \displaystyle{y+{{h\,Y} \over{t_n^2\,H}}\,\left(t_n^2-t_1^2\right)= y_0+{{t_1^2-t_0^2\left(y_0\right)} \over{t_0\left(y_0\right)\,t_0'\left(y_0\right)}}}\;;\\h_1^2\left(t_1\right) & = & \displaystyle{{{h\,t_1^2} \over {t_n^3\,H}}\,\left(t_n^2+t_1^2\,{{h\,Y^2} \over {t_n\,H}}\right)=t_1^2\,{{t_1^2-t_0^2\left(y_0\right)} \over{\left(t_0\left(y_0\right)\,t_0'\left(y_0\right)\right)^2}}}\;.\label{eqn:yhray2}\end{eqnarray}Here $y_1$, $h_1$, and $t_1$ are the coordinates of the continuedseismic section. Equations~(\ref{eqn:yhray1}) indicatesthat the time ray projections to a common-offset section have aparabolic form. Time rays do not exist for $t_0'\left(y_0\right)=0$ (alocally horizontal reflector) because in this case post-NMO offsetcontinuation transform is not required.The actual parameter thatdetermines a particular time ray is the reflection point location.This important conclusion follows from the known parametric equations\begin{eqnarray}\label{eqn:gur1}t_0(x) & = & \displaystyle{t_v \sec{\alpha}=t_v(x)\,\sqrt{1+u^2\left(t_v'(x)\right)^2}}\;, \\y_0(x) & = & \displaystyle{x+u t_v\tan{\alpha} =x+u^2\,t_v(x)t_v'(x)}\;,\label{eqn:gur2}\end{eqnarray}where $x$ is the reflection point, $u$ is half of the wave velocity ($u=v/2$), $t_v$ is the vertical time (reflector depth divided by $u$), and$\alpha$ is the local reflector dip. Taking into account that the derivative of the zero-offsettraveltime curve is\begin{equation}{{dt_0}\over{dy_0}}={{t_0'(x)}\over{y_0'(x)}}={{\sin{\alpha}}\over u}={{t_v'(x)} \over \sqrt{1+u^2\left(t_v'(x)\right)^2}}\label{eqn:gurtx}\end{equation}and substituting equations~(\ref{eqn:gur1}) and~(\ref{eqn:gur2})into~(\ref{eqn:yhray1}) and~(\ref{eqn:yhray2}), we get\begin{eqnarray}\label{eqn:rayrp1}y_1\left(t_1\right) & = &\displaystyle{x+{{t_1^2-t_v^2\left(x\right)} \over{t_v\left(x\right)\,t_v'\left(x\right)}}}\;;\\u^2 t^2\left(t_1\right) & = & \displaystyle{t_1^2\,{{t_1^2-t_v^2\left(x\right)} \over{\left(t_v\left(x\right)\,t_v'\left(x\right)\right)^2}}}\;,\label{eqn:rayrp2}\end{eqnarray}where $t^2\left(t_1\right)=t_1^2+h_1^2\left(t_1\right)/u^2$.To visualize the concept of time rays, let us consider some simpleanalytic examples of its application to geometric analysis of theoffset-continuation process.\subsubsection{Example 1: plane reflector}\inputdir{Math}The simplest and most important example is the case of a plane dippingreflector. Putting the origin of the $y$ axis at the intersection ofthe reflector plane with the surface, we can express the reflectiontraveltime after NMO in the form\begin{equation}\tau_n(y,h)=p\,\sqrt{y^2-h^2}\;,\label{eqn:planett}\end{equation}where $p=2\,{ \sin{\alpha} \over v}$, and $\alpha$ is the dip angle. The zero-offset traveltime in this case is a straight line:\begin{equation}t_0\left(y_0\right)=p\,y_0\;.\label{eqn:planezott}\end{equation}According to equations~(\ref{eqn:yhray1}-\ref{eqn:yhray2}), the timerays in this case are defined by\begin{equation}y_1\left(t_1\right)={t_1^2 \over {p^2\,y_0}}\;;\;h_1^2\left(t_1\right)=t_1^2\,{{t_1^2-p^2\,y_0^2} \over{p^4\,y_0^2}}\;;\;y_0={{y^2-h^2} \over y}\;.\label{eqn:planerays}\end{equation}The geometry of the OC transformation is shown in Figure\ref{fig:ocopln}.\plot{ocopln}{width=6in,height=3in}{Transformation of  the reflection traveltime curves in the OC process: the case of a  plane dipping reflector. Left: Time coordinate before the NMO  correction. Right: Time coordinate after NMO. The solid lines  indicate traveltime curves at different common-offset sections; the  dashed lines indicate time rays.}\subsubsection{Example 2: point diffractor}  The second example is the case of a point diffractor (the left side  of Figure \ref{fig:ococrv}).  Without loss of generality, the origin  of the midpoint axis can be put above the diffraction point. In this  case the zero-offset reflection traveltime curve has the well-known  hyperbolic form\begin{equation}t_0\left(y_0\right)={\sqrt{z^2+y_0^2} \over u}\;,\label{eqn:pointzott}\end{equation}where $z$ is the depth of the diffractor and $u=v/2$ is half of thewave velocity. Time rays are defined according toequations~(\ref{eqn:yhray1}-\ref{eqn:yhray2}), as follows:\begin{equation}y_1\left(t_1\right)={{u^2\,t_1^2-z^2} \over y_0}\;;\;u^2\,t^2\left(t_1\right)=u^2\,t_1^2+h_1^2\left(t_1\right)=u^2\,t_1^2\,{{u^2\,t_1^2-z^2} \over y_0^2}\;.\label{eqn:pointrays}\end{equation}\plot{ococrv}{width=6in,height=3in}{Transformation of  the reflection traveltime curves in the OC process. Left: the case  of a diffraction point. Right: the case of an elliptic reflector.  Solid lines indicate traveltime curves at different common-offset  sections, dashed lines indicate time rays.}\subsubsection{Example 3: elliptic reflector}The third example (the right side of Figure \ref{fig:ococrv}) is thecurious case of a focusing elliptic reflector. Let $y$ be the centerof the ellipse and $h$ be half the distance between the foci of theellipse. If both foci are on the surface, the zero-offsettraveltime curve is defined by the so-called ``DMO smile''\cite[]{GPR29-03-03740406}:\begin{equation}t_0\left(y_0\right)={t_n \over h}\,\sqrt{h^2-\left(y-y_0\right)^2}\;,\label{eqn:smilezott}\end{equation} where $t_n=2\,z/v$, and $z$ is the small semi-axis of the ellipse.The time-ray equations are\begin{equation}y_1\left(t_1\right)=y+{h^2\over {y-y_0}}\,{{t_1^2-t_n^2} \over t_n^2}\;;\;h_1^2\left(t_1\right)=h^2\,{t_1^2 \over t_n^2}\,\left(1+{h^2\over \left(y-y_0\right)^2}\,{{t_1^2-t_n^2} \over t_n^2}\right)\;.\label{eqn:smilerays}\end{equation}When $y_1$ coincides with $y$, and $h_1$ coincides with $h$, thesource and the receiver are in the foci of the elliptic reflector, andthe traveltime curve degenerates to a point $t_1=t_n$. This remarkablefact is the actual basis of the geometric theory of dip moveout\cite[]{GPR29-03-03740406}.\subsection{Proof of amplitude equivalence} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Let us now consider the connection between the laws of traveltimetransformation and the laws of the corresponding amplitudetransformation.  The change of the wave amplitudes in the OC processis described by the first-order partial differential transportequation~(\ref{eqn:transport}). We can find the general solution ofthis equation by applying the method of characteristics. The solutiontakes the explicit integral form\begin{equation}A_n\left(t_n\right)=A_0\left(t_0\right)\,\exp{\left(\int_{t_o}^{t_n}\left[h\,\left({\partial^2 \tau_n \over \partial y^2}-{\partial^2 \tau_n \over \partial h^2}\right)\,\left(\tau_n\,{\partial \tau_n \over \partial h} \right)^{-1}\right]\,d\tau_n\right)}\;.\label{eqn:ampint}\end{equation}The integral in equation~(\ref{eqn:ampint}) is defined on a curvedtime ray, and $A_n(t_n)$ stands for the amplitude transported alongthis ray. In the case of a plane dipping reflector, the ray amplitudecan be immediately evaluated by substituting the explicit traveltimeand time ray equations from the preceding sectioninto~(\ref{eqn:ampint}). The amplitude expression in this case takesthe simple form\begin{equation}A_n\left(t_n\right)=A_0\left(t_0\right)\,\exp{\left(-\int_{t_o}^{t_n}\frac{d\tau_n}{\tau_n}\right)} = A_0\left(t_0\right)\,{t_0 \over t_n}\;.\label{eqn:ampplane}\end{equation}In order to consider the more general case of a curvilinear reflector,

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一区二区三区 在线观看视频| 久久久久久久久伊人| 91精品国产91久久久久久最新毛片 | 国产很黄免费观看久久| 色综合久久99| 国产女主播一区| 日本不卡一区二区| 色综合久久久久综合| 欧美激情中文不卡| 激情综合色播激情啊| 三级不卡在线观看| 99久久精品费精品国产一区二区| 欧美日韩一二区| 国产三级精品视频| 国产在线精品一区二区| 911精品产国品一二三产区| 亚洲人成精品久久久久久| 国产一区二区三区精品欧美日韩一区二区三区 | 欧美日韩精品一区二区在线播放| 国产精品美女久久久久久久久久久 | 香蕉成人伊视频在线观看| va亚洲va日韩不卡在线观看| 欧美精品一区二区三区蜜臀 | 五月婷婷欧美视频| 国产一区在线看| 日韩一区二区精品| 日日摸夜夜添夜夜添国产精品| 欧美视频在线播放| 亚洲黄色性网站| 色婷婷亚洲一区二区三区| 中文字幕亚洲综合久久菠萝蜜| 国产精品99久久久久久久女警| 日韩女优电影在线观看| 蜜桃视频第一区免费观看| 欧美精品视频www在线观看| 亚洲一区二区影院| 欧美日韩精品高清| 轻轻草成人在线| 久久亚洲综合色一区二区三区| 奇米精品一区二区三区在线观看一| 欧美日韩另类一区| 日韩精品亚洲专区| 678五月天丁香亚洲综合网| 天天爽夜夜爽夜夜爽精品视频| 欧美在线观看视频在线| 图片区小说区国产精品视频| 在线成人高清不卡| 免费精品视频在线| 国产亚洲欧美一区在线观看| 不卡的电影网站| 亚洲1区2区3区视频| 日韩欧美在线123| 国产精品一二三| 亚洲免费在线视频一区 二区| 欧美最猛性xxxxx直播| 婷婷丁香久久五月婷婷| 日韩女优制服丝袜电影| 成人黄色综合网站| 丝袜美腿亚洲一区| 久久精品夜色噜噜亚洲aⅴ| 波多野洁衣一区| 日韩av一区二区三区| 欧美国产禁国产网站cc| 欧美最新大片在线看| 激情图区综合网| 一区二区高清在线| 精品对白一区国产伦| 99久久久无码国产精品| 日本在线播放一区二区三区| 日本一区二区电影| 欧美蜜桃一区二区三区| av中文一区二区三区| 日韩精品乱码av一区二区| 日本一区二区视频在线观看| 91精品婷婷国产综合久久竹菊| 大胆欧美人体老妇| 香蕉加勒比综合久久| 国产精品盗摄一区二区三区| 日韩视频免费观看高清完整版| 99久久精品免费| 激情久久五月天| 午夜a成v人精品| 亚洲免费观看高清完整| 久久女同互慰一区二区三区| 欧美日本一区二区在线观看| 91日韩在线专区| 高清国产一区二区| 久久精品久久精品| 天天色综合天天| 亚洲图片欧美综合| 中文字幕在线不卡| 国产日韩视频一区二区三区| 日韩精品一区在线观看| 欧美精品精品一区| 欧美日韩综合色| 91农村精品一区二区在线| 国产盗摄一区二区| 国产一区二区伦理片| 日本视频免费一区| 性做久久久久久免费观看欧美| 日韩美女精品在线| 国产精品日日摸夜夜摸av| 久久久久久日产精品| 精品国免费一区二区三区| 欧美卡1卡2卡| 欧美日韩一区二区三区四区五区| 91视频免费看| av一区二区不卡| 99久久国产综合精品色伊| 成人激情小说乱人伦| 成人网页在线观看| 成人激情视频网站| 成人午夜激情在线| 99久久精品国产毛片| 99久久综合国产精品| 99久久99久久久精品齐齐| 91玉足脚交白嫩脚丫在线播放| 成人深夜视频在线观看| 波多野结衣在线aⅴ中文字幕不卡| 成人开心网精品视频| 99久久免费国产| 欧美综合视频在线观看| 欧美日韩一区三区| 欧美一级二级三级乱码| 26uuu国产电影一区二区| 国产视频在线观看一区二区三区| 国产亚洲欧美在线| 亚洲欧洲日韩av| 亚洲高清视频在线| 热久久久久久久| 国产99久久久精品| 97久久超碰国产精品电影| av高清久久久| 69久久99精品久久久久婷婷| 久久久久久久久一| 国产精品免费aⅴ片在线观看| 亚洲人成网站色在线观看| 日韩和欧美一区二区三区| 捆绑调教美女网站视频一区| 国产99久久久国产精品| 91女神在线视频| 欧美一区二区三区公司| 国产精品欧美综合在线| 亚洲欧美色一区| 日韩黄色免费电影| 高清在线观看日韩| 欧美精品乱码久久久久久按摩| 久久久噜噜噜久久人人看| 一区二区激情小说| 国产精品一区免费在线观看| 一本大道久久a久久综合婷婷| 欧美成人女星排行榜| 亚洲欧美另类小说视频| 美女在线一区二区| 91国产丝袜在线播放| 日韩精品一区二区三区在线观看| 国产精品国产a| 久久综合综合久久综合| 日本国产一区二区| 国产视频一区二区在线| 日本不卡一二三| 色8久久精品久久久久久蜜| 久久综合狠狠综合| 日韩国产欧美一区二区三区| av不卡免费电影| 精品不卡在线视频| 日本系列欧美系列| 91久久免费观看| 中文字幕+乱码+中文字幕一区| 秋霞成人午夜伦在线观看| 91老师片黄在线观看| 国产欧美综合色| 精品一区二区三区免费| 91麻豆精品国产| 亚洲一区二区三区中文字幕| www.综合网.com| 国产亚洲精品资源在线26u| 美女视频黄 久久| 欧美另类高清zo欧美| 亚洲一区自拍偷拍| av电影天堂一区二区在线| 国产欧美视频一区二区三区| 久久精品国产一区二区三区免费看| 欧美日韩一区二区三区视频| 亚洲码国产岛国毛片在线| av欧美精品.com| 中文字幕一区二区三区在线播放| 国产一区二区三区国产| 精品国产一区二区三区久久影院| 五月天一区二区三区| 欧美日韩国产不卡| 污片在线观看一区二区| 欧美日韩成人综合| 午夜久久久久久久久| 欧亚一区二区三区| 伊人一区二区三区| 91福利精品视频| 亚洲成人7777| 日韩三级在线免费观看| 久久国产精品99久久人人澡|